

 	
 - Table of Content -

 	
 Underscore documentation

 	
 Underscore

Underscore documentation

 About this book.

 Documentation generated by docs2epub [http://javier.xyz/docs2epub/] on Fri Sep 02 2016 01:09:19 GMT-0500 (CDT), scrapped from http://underscorejs.org/.

 Find more about this project on https://github.com/jashkenas/underscore.
 LICENCE of Underscore: https://raw.githubusercontent.com/jashkenas/underscore/master/LICENSE

 Underscore

 Underscore
 is a JavaScript library that provides a whole mess of useful functional
 programming helpers without extending any built-in objects.
 It’s the answer to the question: “If I sit down in front of a
 blank HTML page, and want to start being productive immediately, what do I need?”
 … and the tie to go along with
 jQuery's tux and
 Backbone's suspenders.

 Underscore provides over 100 functions that support both your favorite
 workaday functional helpers: map, filter, invoke —
 as well as more specialized goodies: function binding, javascript
 templating, creating quick indexes, deep equality testing, and so on.

 The project is
 hosted on GitHub.
 You can report bugs and discuss features on the
 issues page,
 on Freenode in the #documentcloud channel, or in our Gitter
 channel.

 Collection Functions (Arrays or Objects)

 _.each(list, iteratee, [context])
 Alias: forEach

Iterates over a list of elements, yielding each in turn to an iteratee
 function. The iteratee is bound to the context object, if one is
 passed. Each invocation of iteratee is called with three arguments:
 (element, index, list). If list is a JavaScript object, iteratee's
 arguments will be (value, key, list). Returns the list for chaining.

 _.each([1, 2, 3], alert);
=> alerts each number in turn...
_.each({one: 1, two: 2, three: 3}, alert);
=> alerts each number value in turn...

 Note: Collection functions work on arrays, objects, and
 array-like objects such as arguments, NodeList
 and similar. But it works by duck-typing, so avoid passing objects with
 a numeric length property. It's also good to note that an
 each loop cannot be broken out of — to break, use _.find
 instead.

 _.map(list, iteratee, [context])
 Alias: collect

Produces a new array of values by mapping each value in list
 through a transformation function (iteratee). The iteratee
 is passed three arguments: the value, then the index
 (or key) of the iteration, and finally a reference to the entire
 list.

 _.map([1, 2, 3], function(num){ return num * 3; });
=> [3, 6, 9]
_.map({one: 1, two: 2, three: 3}, function(num, key){ return num * 3; });
=> [3, 6, 9]
_.map([[1, 2], [3, 4]], _.first);
=> [1, 3]

 _.reduce(list, iteratee, [memo], [context])
 Aliases: inject, foldl

Also known as inject and foldl, reduce boils down a list of values into a single value.
 Memo is the initial state of the reduction, and each successive step of it should be returned by
 iteratee. The iteratee is passed four arguments: the memo, then the value and
 index (or key) of the iteration, and finally a reference to the entire list.

 If no memo is passed to the initial invocation of reduce, the iteratee is not invoked on the first element
 of the list. The first element is instead passed as the memo in the invocation of the iteratee on the next
 element in the list.

 var sum = _.reduce([1, 2, 3], function(memo, num){ return memo + num; }, 0);
=> 6

 _.reduceRight(list, iteratee, memo, [context])
 Alias: foldr

The right-associative version of reduce. Foldr
 is not as useful in JavaScript as it would be in a language with lazy
 evaluation.

 var list = [[0, 1], [2, 3], [4, 5]];
var flat = _.reduceRight(list, function(a, b) { return a.concat(b); }, []);
=> [4, 5, 2, 3, 0, 1]

 _.find(list, predicate, [context])
 Alias: detect

Looks through each value in the list, returning the first one that
 passes a truth test (predicate), or undefined if no value
 passes the test. The function returns as
 soon as it finds an acceptable element, and doesn't traverse the
 entire list.

 var even = _.find([1, 2, 3, 4, 5, 6], function(num){ return num % 2 == 0; });
=> 2

 _.filter(list, predicate, [context])
 Alias: select

Looks through each value in the list, returning an array of all
 the values that pass a truth test (predicate).

 var evens = _.filter([1, 2, 3, 4, 5, 6], function(num){ return num % 2 == 0; });
=> [2, 4, 6]

 _.where(list, properties)

Looks through each value in the list, returning an array of all
 the values that contain all of the key-value pairs listed in properties.

 _.where(listOfPlays, {author: "Shakespeare", year: 1611});
=> [{title: "Cymbeline", author: "Shakespeare", year: 1611},
 {title: "The Tempest", author: "Shakespeare", year: 1611}]

 _.findWhere(list, properties)

Looks through the list and returns the first value that matches
 all of the key-value pairs listed in properties.

 If no match is found, or if list is empty, undefined will be
 returned.

 _.findWhere(publicServicePulitzers, {newsroom: "The New York Times"});
=> {year: 1918, newsroom: "The New York Times",
 reason: "For its public service in publishing in full so many official reports,
 documents and speeches by European statesmen relating to the progress and
 conduct of the war."}

 _.reject(list, predicate, [context])

Returns the values in list without the elements that the truth
 test (predicate) passes. The opposite of filter.

 var odds = _.reject([1, 2, 3, 4, 5, 6], function(num){ return num % 2 == 0; });
=> [1, 3, 5]

 _.every(list, [predicate], [context])
 Alias: all

Returns true if all of the values in the list pass the
 predicate truth test. Short-circuits and stops traversing the list
 if a false element is found.

 _.every([2, 4, 5], function(num) { return num % 2 == 0; });
=> false

 _.some(list, [predicate], [context])
 Alias: any

Returns true if any of the values in the list pass the
 predicate truth test. Short-circuits and stops traversing the list
 if a true element is found.

 _.some([null, 0, 'yes', false]);
=> true

 _.contains(list, value, [fromIndex])
 Alias: includes

Returns true if the value is present in the list.
 Uses indexOf internally, if list is an Array.
 Use fromIndex to start your search at a given index.

 _.contains([1, 2, 3], 3);
=> true

 _.invoke(list, methodName, *arguments)

Calls the method named by methodName on each value in the list.
 Any extra arguments passed to invoke will be forwarded on to the
 method invocation.

 _.invoke([[5, 1, 7], [3, 2, 1]], 'sort');
=> [[1, 5, 7], [1, 2, 3]]

 _.pluck(list, propertyName)

A convenient version of what is perhaps the most common use-case for
 map: extracting a list of property values.

 var stooges = [{name: 'moe', age: 40}, {name: 'larry', age: 50}, {name: 'curly', age: 60}];
_.pluck(stooges, 'name');
=> ["moe", "larry", "curly"]

 _.max(list, [iteratee], [context])

Returns the maximum value in list. If an iteratee
 function is provided, it will be used on each value to generate the
 criterion by which the value is ranked. -Infinity is returned
 if list is empty, so an isEmpty guard
 may be required. Non-numerical values in list will be ignored.

 var stooges = [{name: 'moe', age: 40}, {name: 'larry', age: 50}, {name: 'curly', age: 60}];
_.max(stooges, function(stooge){ return stooge.age; });
=> {name: 'curly', age: 60};

 _.min(list, [iteratee], [context])

Returns the minimum value in list. If an iteratee
 function is provided, it will be used on each value to generate the
 criterion by which the value is ranked. Infinity is returned
 if list is empty, so an isEmpty guard
 may be required. Non-numerical values in list will be ignored.

 var numbers = [10, 5, 100, 2, 1000];
_.min(numbers);
=> 2

 _.sortBy(list, iteratee, [context])

Returns a (stably) sorted copy of list, ranked in ascending
 order by the results of running each value through iteratee.
 iteratee may also be the string name of the property to sort by (eg.
 length).

 _.sortBy([1, 2, 3, 4, 5, 6], function(num){ return Math.sin(num); });
=> [5, 4, 6, 3, 1, 2]

var stooges = [{name: 'moe', age: 40}, {name: 'larry', age: 50}, {name: 'curly', age: 60}];
_.sortBy(stooges, 'name');
=> [{name: 'curly', age: 60}, {name: 'larry', age: 50}, {name: 'moe', age: 40}];

 _.groupBy(list, iteratee, [context])

Splits a collection into sets, grouped by the result of running each
 value through iteratee. If iteratee is a string instead of
 a function, groups by the property named by iteratee on each of
 the values.

 _.groupBy([1.3, 2.1, 2.4], function(num){ return Math.floor(num); });
=> {1: [1.3], 2: [2.1, 2.4]}

_.groupBy(['one', 'two', 'three'], 'length');
=> {3: ["one", "two"], 5: ["three"]}

 _.indexBy(list, iteratee, [context])

Given a list, and an iteratee function that returns a
 key for each element in the list (or a property name),
 returns an object with an index of each item.
 Just like groupBy, but for when you know your
 keys are unique.

 var stooges = [{name: 'moe', age: 40}, {name: 'larry', age: 50}, {name: 'curly', age: 60}];
_.indexBy(stooges, 'age');
=> {
 "40": {name: 'moe', age: 40},
 "50": {name: 'larry', age: 50},
 "60": {name: 'curly', age: 60}
}

 _.countBy(list, iteratee, [context])

Sorts a list into groups and returns a count for the number of objects
 in each group.
 Similar to groupBy, but instead of returning a list of values,
 returns a count for the number of values in that group.

 _.countBy([1, 2, 3, 4, 5], function(num) {
 return num % 2 == 0 ? 'even': 'odd';
});
=> {odd: 3, even: 2}

 _.shuffle(list)

Returns a shuffled copy of the list, using a version of the
 Fisher-Yates shuffle.

 _.shuffle([1, 2, 3, 4, 5, 6]);
=> [4, 1, 6, 3, 5, 2]

 _.sample(list, [n])

Produce a random sample from the list. Pass a number to
 return n random elements from the list. Otherwise a single random
 item will be returned.

 _.sample([1, 2, 3, 4, 5, 6]);
=> 4

_.sample([1, 2, 3, 4, 5, 6], 3);
=> [1, 6, 2]

 _.toArray(list)

Creates a real Array from the list (anything that can be
 iterated over). Useful for transmuting the arguments object.

 (function(){ return _.toArray(arguments).slice(1); })(1, 2, 3, 4);
=> [2, 3, 4]

 _.size(list)

Return the number of values in the list.

 _.size({one: 1, two: 2, three: 3});
=> 3

 _.partition(array, predicate)

Split array into two arrays: one whose elements all satisfy
 predicate and one whose elements all do not satisfy predicate.

 _.partition([0, 1, 2, 3, 4, 5], isOdd);
=> [[1, 3, 5], [0, 2, 4]]

 Array Functions

 Note: All array functions will also work on the arguments object.
 However, Underscore functions are not designed to work on "sparse" arrays.

 _.first(array, [n])
 Aliases: head, take

Returns the first element of an array. Passing n will
 return the first n elements of the array.

 _.first([5, 4, 3, 2, 1]);
=> 5

 _.initial(array, [n])

Returns everything but the last entry of the array. Especially useful on
 the arguments object. Pass n to exclude the last n elements
 from the result.

 _.initial([5, 4, 3, 2, 1]);
=> [5, 4, 3, 2]

 _.last(array, [n])

Returns the last element of an array. Passing n will return
 the last n elements of the array.

 _.last([5, 4, 3, 2, 1]);
=> 1

 _.rest(array, [index])
 Aliases: tail, drop

Returns the rest of the elements in an array. Pass an index
 to return the values of the array from that index onward.

 _.rest([5, 4, 3, 2, 1]);
=> [4, 3, 2, 1]

 _.compact(array)

Returns a copy of the array with all falsy values removed.
 In JavaScript, false, null, 0, "",
 undefined and NaN are all falsy.

 _.compact([0, 1, false, 2, '', 3]);
=> [1, 2, 3]

 _.flatten(array, [shallow])

Flattens a nested array (the nesting can be to any depth). If you
 pass shallow, the array will only be flattened a single level.

 _.flatten([1, [2], [3, [[4]]]]);
=> [1, 2, 3, 4];

_.flatten([1, [2], [3, [[4]]]], true);
=> [1, 2, 3, [[4]]];

 _.without(array, *values)

Returns a copy of the array with all instances of the values
 removed.

 _.without([1, 2, 1, 0, 3, 1, 4], 0, 1);
=> [2, 3, 4]

 _.union(*arrays)

Computes the union of the passed-in arrays: the list of unique items,
 in order, that are present in one or more of the arrays.

 _.union([1, 2, 3], [101, 2, 1, 10], [2, 1]);
=> [1, 2, 3, 101, 10]

 _.intersection(*arrays)

Computes the list of values that are the intersection of all the arrays.
 Each value in the result is present in each of the arrays.

 _.intersection([1, 2, 3], [101, 2, 1, 10], [2, 1]);
=> [1, 2]

 _.difference(array, *others)

Similar to without, but returns the values from array that
 are not present in the other arrays.

 _.difference([1, 2, 3, 4, 5], [5, 2, 10]);
=> [1, 3, 4]

 _.uniq(array, [isSorted], [iteratee])
 Alias: unique

Produces a duplicate-free version of the array, using === to test
 object equality. In particular only the first occurence of each value is kept.
 If you know in advance that the array is sorted,
 passing true for isSorted will run a much faster algorithm.
 If you want to compute unique items based on a transformation, pass an
 iteratee function.

 _.uniq([1, 2, 1, 4, 1, 3]);
=> [1, 2, 4, 3]

 _.zip(*arrays)

Merges together the values of each of the arrays with the
 values at the corresponding position. Useful when you have separate
 data sources that are coordinated through matching array indexes.
 Use with apply to pass in an array of arrays.
 If you're working with a matrix of nested arrays, this can be used to
 transpose the matrix.

 _.zip(['moe', 'larry', 'curly'], [30, 40, 50], [true, false, false]);
=> [["moe", 30, true], ["larry", 40, false], ["curly", 50, false]]

 _.unzip(array)

The opposite of zip. Given an array of arrays, returns a
 series of new arrays, the first of which contains all of the first elements
 in the input arrays, the second of which contains all of the second elements,
 and so on.

 _.unzip([["moe", 30, true], ["larry", 40, false], ["curly", 50, false]]);
=> [['moe', 'larry', 'curly'], [30, 40, 50], [true, false, false]]

 _.object(list, [values])

Converts arrays into objects. Pass either a single list of
 [key, value] pairs, or a list of keys, and a list of values.
 If duplicate keys exist, the last value wins.

 _.object(['moe', 'larry', 'curly'], [30, 40, 50]);
=> {moe: 30, larry: 40, curly: 50}

_.object([['moe', 30], ['larry', 40], ['curly', 50]]);
=> {moe: 30, larry: 40, curly: 50}

 _.indexOf(array, value, [isSorted])

Returns the index at which value can be found in the array,
 or -1 if value is not present in the array. If you're working with a
 large array, and you know that the array is already sorted, pass true
 for isSorted to use a faster binary search ... or, pass a number as
 the third argument in order to look for the first matching value in the
 array after the given index.

 _.indexOf([1, 2, 3], 2);
=> 1

 _.lastIndexOf(array, value, [fromIndex])

Returns the index of the last occurrence of value in the array,
 or -1 if value is not present. Pass fromIndex to start your search at a
 given index.

 _.lastIndexOf([1, 2, 3, 1, 2, 3], 2);
=> 4

 _.sortedIndex(list, value, [iteratee], [context])

Uses a binary search to determine the index at which the value
 should be inserted into the list in order to maintain the list's
 sorted order. If an iteratee function is provided, it will be used to compute
 the sort ranking of each value, including the value you pass.
 The iteratee may also be the string name of the property to sort by (eg. length).

 _.sortedIndex([10, 20, 30, 40, 50], 35);
=> 3

var stooges = [{name: 'moe', age: 40}, {name: 'curly', age: 60}];
_.sortedIndex(stooges, {name: 'larry', age: 50}, 'age');
=> 1

 _.findIndex(array, predicate, [context])

Similar to _.indexOf, returns the first index
 where the predicate truth test passes; otherwise returns -1.

 _.findIndex([4, 6, 8, 12], isPrime);
=> -1 // not found
_.findIndex([4, 6, 7, 12], isPrime);
=> 2

 _.findLastIndex(array, predicate, [context])

Like _.findIndex but iterates the array in reverse,
 returning the index closest to the end where the predicate truth test
 passes.

 var users = [{'id': 1, 'name': 'Bob', 'last': 'Brown'},
 {'id': 2, 'name': 'Ted', 'last': 'White'},
 {'id': 3, 'name': 'Frank', 'last': 'James'},
 {'id': 4, 'name': 'Ted', 'last': 'Jones'}];
_.findLastIndex(users, {
 name: 'Ted'
});
=> 3

 _.range([start], stop, [step])

A function to create flexibly-numbered lists of integers, handy for
 each and map loops. start, if omitted, defaults
 to 0; step defaults to 1. Returns a list of integers
 from start (inclusive) to stop (exclusive), incremented (or decremented) by step,
 exclusive. Note that ranges that stop before they start
 are considered to be zero-length instead of negative — if you'd like a
 negative range, use a negative step.

 _.range(10);
=> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
_.range(1, 11);
=> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
_.range(0, 30, 5);
=> [0, 5, 10, 15, 20, 25]
_.range(0, -10, -1);
=> [0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
_.range(0);
=> []

 Function (uh, ahem) Functions

 _.bind(function, object, *arguments)

Bind a function to an object, meaning that whenever
 the function is called, the value of this will be the object.
 Optionally, pass arguments to the function to pre-fill them,
 also known as partial application. For partial application without
 context binding, use partial.

 var func = function(greeting){ return greeting + ': ' + this.name };
func = _.bind(func, {name: 'moe'}, 'hi');
func();
=> 'hi: moe'

 _.bindAll(object, *methodNames)

Binds a number of methods on the object, specified by
 methodNames, to be run in the context of that object whenever they
 are invoked. Very handy for binding functions that are going to be used
 as event handlers, which would otherwise be invoked with a fairly useless
 this. methodNames are required.

 var buttonView = {
 label : 'underscore',
 onClick: function(){ alert('clicked: ' + this.label); },
 onHover: function(){ console.log('hovering: ' + this.label); }
};
_.bindAll(buttonView, 'onClick', 'onHover');
// When the button is clicked, this.label will have the correct value.
jQuery('#underscore_button').on('click', buttonView.onClick);

 _.partial(function, *arguments)

Partially apply a function by filling in any number of its arguments,
 without changing its dynamic this value. A close cousin
 of bind. You may pass _ in your list of
 arguments to specify an argument that should not be pre-filled, but
 left open to supply at call-time.

 var subtract = function(a, b) { return b - a; };
sub5 = _.partial(subtract, 5);
sub5(20);
=> 15

// Using a placeholder
subFrom20 = _.partial(subtract, _, 20);
subFrom20(5);
=> 15

 _.memoize(function, [hashFunction])

Memoizes a given function by caching the computed result. Useful
 for speeding up slow-running computations. If passed an optional
 hashFunction, it will be used to compute the hash key for storing
 the result, based on the arguments to the original function. The default
 hashFunction just uses the first argument to the memoized function
 as the key. The cache of memoized values is available as the cache
 property on the returned function.

 var fibonacci = _.memoize(function(n) {
 return n < 2 ? n: fibonacci(n - 1) + fibonacci(n - 2);
});

 _.delay(function, wait, *arguments)

Much like setTimeout, invokes function after wait
 milliseconds. If you pass the optional arguments, they will be
 forwarded on to the function when it is invoked.

 var log = _.bind(console.log, console);
_.delay(log, 1000, 'logged later');
=> 'logged later' // Appears after one second.

 _.defer(function, *arguments)

Defers invoking the function until the current call stack has cleared,
 similar to using setTimeout with a delay of 0. Useful for performing
 expensive computations or HTML rendering in chunks without blocking the UI thread
 from updating. If you pass the optional arguments, they will be
 forwarded on to the function when it is invoked.

 _.defer(function(){ alert('deferred'); });
// Returns from the function before the alert runs.

 _.throttle(function, wait, [options])

Creates and returns a new, throttled version of the passed function,
 that, when invoked repeatedly, will only actually call the original function
 at most once per every wait
 milliseconds. Useful for rate-limiting events that occur faster than you
 can keep up with.

 By default, throttle will execute the function as soon as you call it
 for the first time, and, if you call it again any number of times
 during the wait period, as soon as that period is over.
 If you'd like to disable the leading-edge
 call, pass {leading: false}, and if you'd like to disable the
 execution on the trailing-edge, pass
{trailing: false}.

 var throttled = _.throttle(updatePosition, 100);
$(window).scroll(throttled);

 _.debounce(function, wait, [immediate])

Creates and returns a new debounced version of the passed function which
 will postpone its execution until after
 wait milliseconds have elapsed since the last time it
 was invoked. Useful for implementing behavior that should only happen
 after the input has stopped arriving. For example: rendering a
 preview of a Markdown comment, recalculating a layout after the window
 has stopped being resized, and so on.

 At the end of the wait interval, the function will be called
 with the arguments that were passed most recently to the
 debounced function.

 Pass true for the immediate argument to cause
 debounce to trigger the function on the leading instead of the
 trailing edge of the wait interval. Useful in circumstances like
 preventing accidental double-clicks on a "submit" button from firing a
 second time.

 var lazyLayout = _.debounce(calculateLayout, 300);
$(window).resize(lazyLayout);

 _.once(function)

Creates a version of the function that can only be called one time.
 Repeated calls to the modified function will have no effect, returning
 the value from the original call. Useful for initialization functions,
 instead of having to set a boolean flag and then check it later.

 var initialize = _.once(createApplication);
initialize();
initialize();
// Application is only created once.

 _.after(count, function)

Creates a version of the function that will only be run after first
 being called count times. Useful for grouping asynchronous responses,
 where you want to be sure that all the async calls have finished, before
 proceeding.

 var renderNotes = _.after(notes.length, render);
_.each(notes, function(note) {
 note.asyncSave({success: renderNotes});
});
// renderNotes is run once, after all notes have saved.

 _.before(count, function)

Creates a version of the function that can be called no more than
 count times. The result of the last function call is memoized and
 returned when count has been reached.

 var monthlyMeeting = _.before(3, askForRaise);
monthlyMeeting();
monthlyMeeting();
monthlyMeeting();
// the result of any subsequent calls is the same as the second call

 _.wrap(function, wrapper)

Wraps the first function inside of the wrapper function,
 passing it as the first argument. This allows the wrapper to
 execute code before and after the function runs, adjust the arguments,
 and execute it conditionally.

 var hello = function(name) { return "hello: " + name; };
hello = _.wrap(hello, function(func) {
 return "before, " + func("moe") + ", after";
});
hello();
=> 'before, hello: moe, after'

 _.negate(predicate)

Returns a new negated version of the predicate function.

 var isFalsy = _.negate(Boolean);
_.find([-2, -1, 0, 1, 2], isFalsy);
=> 0

 _.compose(*functions)

Returns the composition of a list of functions, where each function
 consumes the return value of the function that follows. In math terms,
 composing the functions f(), g(), and h() produces
 f(g(h())).

 var greet = function(name){ return "hi: " + name; };
var exclaim = function(statement){ return statement.toUpperCase() + "!"; };
var welcome = _.compose(greet, exclaim);
welcome('moe');
=> 'hi: MOE!'

 Object Functions

 _.keys(object)

Retrieve all the names of the object's own enumerable properties.

 _.keys({one: 1, two: 2, three: 3});
=> ["one", "two", "three"]

 _.allKeys(object)

Retrieve all the names of object's own and inherited properties.

 function Stooge(name) {
 this.name = name;
}
Stooge.prototype.silly = true;
_.allKeys(new Stooge("Moe"));
=> ["name", "silly"]

 _.values(object)

Return all of the values of the object's own properties.

 _.values({one: 1, two: 2, three: 3});
=> [1, 2, 3]

 _.mapObject(object, iteratee, [context])

Like map, but for objects. Transform the value
 of each property in turn.

 _.mapObject({start: 5, end: 12}, function(val, key) {
 return val + 5;
});
=> {start: 10, end: 17}

 _.pairs(object)

Convert an object into a list of [key, value] pairs.

 _.pairs({one: 1, two: 2, three: 3});
=> [["one", 1], ["two", 2], ["three", 3]]

 _.invert(object)

Returns a copy of the object where the keys have become the values
 and the values the keys. For this to work, all of your object's values
 should be unique and string serializable.

 _.invert({Moe: "Moses", Larry: "Louis", Curly: "Jerome"});
=> {Moses: "Moe", Louis: "Larry", Jerome: "Curly"};

 _.create(prototype, props)

Creates a new object with the given prototype, optionally attaching
 props as own properties. Basically, Object.create,
 but without all of the property descriptor jazz.

 var moe = _.create(Stooge.prototype, {name: "Moe"});

 _.functions(object)
 Alias: methods

Returns a sorted list of the names of every method in an object —
 that is to say, the name of every function property of the object.

 .functions();
=> ["all", "any", "bind", "bindAll", "clone", "compact", "compose" ...

 _.findKey(object, predicate, [context])

Similar to _.findIndex but for keys in objects.
 Returns the key where the predicate truth test
 passes or undefined.

 _.extend(destination, *sources)

Shallowly copy all of the properties in the source objects over to the
 destination object, and return the destination object.
 Any nested objects or arrays will be copied by reference, not duplicated.
 It's in-order, so the last source will override properties of the same
 name in previous arguments.

 _.extend({name: 'moe'}, {age: 50});
=> {name: 'moe', age: 50}

 _.extendOwn(destination, *sources)
 Alias: assign

Like extend, but only copies own properties over to the
 destination object.

 _.pick(object, *keys)

Return a copy of the object, filtered to only have values for
 the whitelisted keys (or array of valid keys). Alternatively
 accepts a predicate indicating which keys to pick.

 _.pick({name: 'moe', age: 50, userid: 'moe1'}, 'name', 'age');
=> {name: 'moe', age: 50}
_.pick({name: 'moe', age: 50, userid: 'moe1'}, function(value, key, object) {
 return _.isNumber(value);
});
=> {age: 50}

 _.omit(object, *keys)

Return a copy of the object, filtered to omit the blacklisted
 keys (or array of keys). Alternatively accepts a predicate
 indicating which keys to omit.

 _.omit({name: 'moe', age: 50, userid: 'moe1'}, 'userid');
=> {name: 'moe', age: 50}
_.omit({name: 'moe', age: 50, userid: 'moe1'}, function(value, key, object) {
 return _.isNumber(value);
});
=> {name: 'moe', userid: 'moe1'}

 _.defaults(object, *defaults)

Fill in undefined properties in object with the first
 value present in the following list of defaults objects.

 var iceCream = {flavor: "chocolate"};
_.defaults(iceCream, {flavor: "vanilla", sprinkles: "lots"});
=> {flavor: "chocolate", sprinkles: "lots"}

 _.clone(object)

Create a shallow-copied clone of the provided plain object.
 Any nested objects or arrays will be copied by reference, not duplicated.

 _.clone({name: 'moe'});
=> {name: 'moe'};

 _.tap(object, interceptor)

Invokes interceptor with the object, and then returns object.
 The primary purpose of this method is to "tap into" a method chain, in order to perform operations on intermediate results within the chain.

 _.chain([1,2,3,200])
 .filter(function(num) { return num % 2 == 0; })
 .tap(alert)
 .map(function(num) { return num * num })
 .value();
=> // [2, 200] (alerted)
=> [4, 40000]

 _.has(object, key)

Does the object contain the given key? Identical to
 object.hasOwnProperty(key), but uses a safe reference to the
 hasOwnProperty function, in case it's been
 overridden accidentally.

 _.has({a: 1, b: 2, c: 3}, "b");
=> true

 _.property(key)

Returns a function that will itself return the key
 property of any passed-in object.

 var stooge = {name: 'moe'};
'moe' === _.property('name')(stooge);
=> true

 _.propertyOf(object)

Inverse of _.property. Takes an object and returns a function
 which will return the value of a provided property.

 var stooge = {name: 'moe'};
_.propertyOf(stooge)('name');
=> 'moe'

 _.matcher(attrs)
 Alias: matches

Returns a predicate function that will tell you if a passed in object
 contains all of the key/value properties present in attrs.

 var ready = _.matcher({selected: true, visible: true});
var readyToGoList = _.filter(list, ready);

 _.isEqual(object, other)

Performs an optimized deep comparison between the two objects, to determine
 if they should be considered equal.

 var stooge = {name: 'moe', luckyNumbers: [13, 27, 34]};
var clone = {name: 'moe', luckyNumbers: [13, 27, 34]};
stooge == clone;
=> false
_.isEqual(stooge, clone);
=> true

 _.isMatch(object, properties)

Tells you if the keys and values in properties are contained
 in object.

 var stooge = {name: 'moe', age: 32};
_.isMatch(stooge, {age: 32});
=> true

 _.isEmpty(object)

Returns true if an enumerable object contains no
 values (no enumerable own-properties). For strings and array-like
 objects _.isEmpty checks if the length property is 0.

 _.isEmpty([1, 2, 3]);
=> false
_.isEmpty({});
=> true

 _.isElement(object)

Returns true if object is a DOM element.

 _.isElement(jQuery('body')[0]);
=> true

 _.isArray(object)

Returns true if object is an Array.

 (function(){ return _.isArray(arguments); })();
=> false
_.isArray([1,2,3]);
=> true

 _.isObject(value)

Returns true if value is an Object. Note that JavaScript
 arrays and functions are objects, while (normal) strings and numbers are not.

 _.isObject({});
=> true
_.isObject(1);
=> false

 _.isArguments(object)

Returns true if object is an Arguments object.

 (function(){ return _.isArguments(arguments); })(1, 2, 3);
=> true
_.isArguments([1,2,3]);
=> false

 _.isFunction(object)

Returns true if object is a Function.

 _.isFunction(alert);
=> true

 _.isString(object)

Returns true if object is a String.

 _.isString("moe");
=> true

 _.isNumber(object)

Returns true if object is a Number (including NaN).

 _.isNumber(8.4 * 5);
=> true

 _.isFinite(object)

Returns true if object is a finite Number.

 _.isFinite(-101);
=> true

_.isFinite(-Infinity);
=> false

 _.isBoolean(object)

Returns true if object is either true or false.

 _.isBoolean(null);
=> false

 _.isDate(object)

Returns true if object is a Date.

 _.isDate(new Date());
=> true

 _.isRegExp(object)

Returns true if object is a RegExp.

 _.isRegExp(/moe/);
=> true

 _.isError(object)

Returns true if object inherits from an Error.

 try {
 throw new TypeError("Example");
} catch (o_O) {
 _.isError(o_O);
}
=> true

 _.isNaN(object)

Returns true if object is NaN.
Note: this is not
 the same as the native isNaN function, which will also return
 true for many other not-number values, such as undefined.

 _.isNaN(NaN);
=> true
isNaN(undefined);
=> true
_.isNaN(undefined);
=> false

 _.isNull(object)

Returns true if the value of object is null.

 _.isNull(null);
=> true
_.isNull(undefined);
=> false

 _.isUndefined(value)

Returns true if value is undefined.

 _.isUndefined(window.missingVariable);
=> true

 _.noConflict()

Give control of the _ variable back to its previous owner. Returns
 a reference to the Underscore object.

 var underscore = _.noConflict();

 _.identity(value)

Returns the same value that is used as the argument. In math:
 f(x) = x
This function looks useless, but is used throughout Underscore as
 a default iteratee.

 var stooge = {name: 'moe'};
stooge === _.identity(stooge);
=> true

 _.constant(value)

Creates a function that returns the same value that is used as the
 argument of _.constant.

 var stooge = {name: 'moe'};
stooge === _.constant(stooge)();
=> true

 _.noop()

Returns undefined irrespective of the arguments passed to it.
 Useful as the default for optional callback arguments.

 obj.initialize = _.noop;

 _(3).times(function(n){ genie.grantWishNumber(n); });

 _.random(min, max)

Returns a random integer between min and max, inclusive.
 If you only pass one argument, it will return a number between 0
 and that number.

 _.random(0, 100);
=> 42

 _.mixin(object)

Allows you to extend Underscore with your own utility functions. Pass
 a hash of {name: function} definitions to have your functions
 added to the Underscore object, as well as the OOP wrapper.

 _.mixin({
 capitalize: function(string) {
 return string.charAt(0).toUpperCase() + string.substring(1).toLowerCase();
 }
});
_("fabio").capitalize();
=> "Fabio"

 _.iteratee(value, [context])

Generates a callback that can be applied to each element in
 a collection. _.iteratee supports a number of shorthand
 syntaxes for common callback use cases. Depending upon value's
 type, _.iteratee will return:

 // No value
_.iteratee();
=> _.identity()

// Function
_.iteratee(function(n) { return n * 2; });
=> function(n) { return n * 2; }

// Object
_.iteratee({firstName: 'Chelsea'});
=> _.matcher({firstName: 'Chelsea'});

// Anything else
_.iteratee('firstName');
=> _.property('firstName');

 The following Underscore methods transform their predicates through
 _.iteratee: countBy, every,
 filter, find, findIndex, findKey,
 findLastIndex, groupBy, indexBy,
 map, mapObject, max, min,
 partition, reject, some, sortBy,
 sortedIndex, and uniq

 _.uniqueId([prefix])

Generate a globally-unique id for client-side models or DOM elements
 that need one. If prefix is passed, the id will be appended to it.

 .uniqueId('contact');
=> 'contact_104'

 _.escape(string)

Escapes a string for insertion into HTML, replacing
 &, <, >, ", `, and ' characters.

 _.escape('Curly, Larry & Moe');
=> "Curly, Larry & Moe"

 _.unescape(string)

The opposite of escape, replaces
 &, <, >,
 ", ` and '
 with their unescaped counterparts.

 _.unescape('Curly, Larry & Moe');
=> "Curly, Larry & Moe"

 _.result(object, property, [defaultValue])

If the value of the named property is a function then invoke it
 with the object as context; otherwise, return it. If a default value
 is provided and the property doesn't exist or is undefined then the default
 will be returned. If defaultValue is a function its result will be returned.

 var object = {cheese: 'crumpets', stuff: function(){ return 'nonsense'; }};
_.result(object, 'cheese');
=> "crumpets"
_.result(object, 'stuff');
=> "nonsense"
_.result(object, 'meat', 'ham');
=> "ham"

 _.now()

Returns an integer timestamp for the current time, using the fastest
 method available in the runtime. Useful for implementing timing/animation
 functions.

 _.now();
=> 1392066795351

 _.template(templateString, [settings])

Compiles JavaScript templates into functions that can be evaluated
 for rendering. Useful for rendering complicated bits of HTML from JSON
 data sources. Template functions can both interpolate values, using
 <%= … %>, as well as execute arbitrary JavaScript code, with
 <% … %>. If you wish to interpolate a value, and have
 it be HTML-escaped, use <%- … %>. When you evaluate a
 template function, pass in a data object that has properties
 corresponding to the template's free variables. The settings argument
 should be a hash containing any _.templateSettings that should be overridden.

 var compiled = _.template("hello: <%= name %>");
compiled({name: 'moe'});
=> "hello: moe"

var template = _.template("<%- value %>");
template({value: '<script>'});
=> "<script>"

 You can also use print from within JavaScript code. This is
 sometimes more convenient than using <%= ... %>.

 var compiled = _.template("<% print('Hello ' + epithet); %>");
compiled({epithet: "stooge"});
=> "Hello stooge"

 If ERB-style delimiters aren't your cup of tea, you can change Underscore's
 template settings to use different symbols to set off interpolated code.
 Define an interpolate regex to match expressions that should be
 interpolated verbatim, an escape regex to match expressions that should
 be inserted after being HTML-escaped, and an evaluate regex to match
 expressions that should be evaluated without insertion into the resulting
 string. You may define or omit any combination of the three.
 For example, to perform
 Mustache.js-style
 templating:

 _.templateSettings = {
 interpolate: /\{\{(.+?)\}\}/g
};

var template = _.template("Hello {{ name }}!");
template({name: "Mustache"});
=> "Hello Mustache!"

 By default, template places the values from your data in the local scope
 via the with statement. However, you can specify a single variable name
 with the variable setting. This can significantly improve the speed
 at which a template is able to render.

 _.template("Using 'with': <%= data.answer %>", {variable: 'data'})({answer: 'no'});
=> "Using 'with': no"

 Precompiling your templates can be a big help when debugging errors you can't
 reproduce. This is because precompiled templates can provide line numbers and
 a stack trace, something that is not possible when compiling templates on the client.
 The source property is available on the compiled template
 function for easy precompilation.

 <script>
 JST.project = <%= _.template(jstText).source %>;
</script>

 Object-Oriented Style

 You can use Underscore in either an object-oriented or a functional style,
 depending on your preference. The following two lines of code are
 identical ways to double a list of numbers.

 _.map([1, 2, 3], function(n){ return n * 2; });
_([1, 2, 3]).map(function(n){ return n * 2; });

 Chaining

 Calling chain will cause all future method calls to return
 wrapped objects. When you've finished the computation, call
 value to retrieve the final value. Here's an example of chaining
 together a map/flatten/reduce, in order to get the word count of
 every word in a song.

var lyrics = [
 {line: 1, words: "I'm a lumberjack and I'm okay"},
 {line: 2, words: "I sleep all night and I work all day"},
 {line: 3, words: "He's a lumberjack and he's okay"},
 {line: 4, words: "He sleeps all night and he works all day"}
];

_.chain(lyrics)
 .map(function(line) { return line.words.split(' '); })
 .flatten()
 .reduce(function(counts, word) {
 counts[word] = (counts[word] || 0) + 1;
 return counts;
 }, {})
 .value();

=> {lumberjack: 2, all: 4, night: 2 ... }

 In addition, the
 Array prototype's methods
 are proxied through the chained Underscore object, so you can slip a
 reverse or a push into your chain, and continue to
 modify the array.

 _.chain(obj)

Returns a wrapped object. Calling methods on this object will continue
 to return wrapped objects until value is called.

 var stooges = [{name: 'curly', age: 25}, {name: 'moe', age: 21}, {name: 'larry', age: 23}];
var youngest = _.chain(stooges)
 .sortBy(function(stooge){ return stooge.age; })
 .map(function(stooge){ return stooge.name + ' is ' + stooge.age; })
 .first()
 .value();
=> "moe is 21"

 _.chain(obj).value()

Extracts the value of a wrapped object.

 _.chain([1, 2, 3]).reverse().value();
=> [3, 2, 1]

 The Underscore documentation is also available in
 Simplified Chinese.

 Underscore.lua,
 a Lua port of the functions that are applicable in both languages.
 Includes OOP-wrapping and chaining.
 (source)

 Dollar.swift, a Swift port
 of many of the Underscore.js functions and more.
 (source)

 Underscore.m, an Objective-C port
 of many of the Underscore.js functions, using a syntax that encourages
 chaining.
 (source)

 _.m, an alternative
 Objective-C port that tries to stick a little closer to the original
 Underscore.js API.
 (source)

 Underscore.php,
 a PHP port of the functions that are applicable in both languages.
 Tailored for PHP 5.4 and made with data-type tolerance in mind.
 (source)

 Underscore-perl,
 a Perl port of many of the Underscore.js functions,
 aimed at on Perl hashes and arrays.
 (source)

 Underscore.cfc,
 a Coldfusion port of many of the Underscore.js functions.
 (source)

 Underscore.string,
 an Underscore extension that adds functions for string-manipulation:
 trim, startsWith, contains, capitalize,
 reverse, sprintf, and more.

 Underscore-java,
 a java port of the functions that are applicable in both languages.
 Includes OOP-wrapping and chaining.
 (source)

 Ruby's Enumerable module.

 Prototype.js, which provides
 JavaScript with collection functions in the manner closest to Ruby's Enumerable.

 Oliver Steele's
 Functional JavaScript,
 which includes comprehensive higher-order function support as well as string lambdas.

 Michael Aufreiter's Data.js,
 a data manipulation + persistence library for JavaScript.

 Python's itertools.

 PyToolz, a Python port
 that extends itertools and functools to include much of the
 Underscore API.

 Funcy, a practical
 collection of functional helpers for Python, partially inspired by Underscore.

 Change Log

 — April 2, 2015 — Diff — Docs

 	
 Adds an _.create method, as a slimmed down version of
 Object.create.

 	
 Works around an iOS bug that can improperly cause isArrayLike
 to be JIT-ed. Also fixes a bug when passing 0 to isArrayLike.

 — Feb. 22, 2015 — Diff — Docs

 	
 Restores the previous old-Internet-Explorer edge cases changed in
 1.8.1.

 	
 Adds a fromIndex argument to _.contains.

 — Feb. 19, 2015 — Diff — Docs

 	
 Fixes/changes some old-Internet Explorer and related edge case
 behavior. Test your app with Underscore 1.8.1 in an old IE and let
 us know how it's doing...

 — Feb. 19, 2015 — Diff — Docs

 	
 Added _.mapObject, which is similar to _.map, but just
 for the values in your object. (A real crowd pleaser.)

 	
 Added _.allKeys which returns all the enumerable property
 names on an object.

 	
 Reverted a 1.7.0 change where _.extend only copied "own"
 properties. Hopefully this will un-break you — if it breaks you
 again, I apologize.

 	
 Added _.extendOwn — a less-useful form of _.extend that
 only copies over "own" properties.

 	
 Added _.findIndex and _.findLastIndex functions,
 which nicely complement their twin-twins _.indexOf and _.lastIndexOf.

 	
 Added an _.isMatch predicate function that tells you if an
 object matches key-value properties. A kissing cousin of
 _.isEqual and _.matcher.

 	
 Added an _.isError function.

 	
 Restored the _.unzip function as the inverse of zip.
 Flip-flopping. I know.

 	
 _.result now takes an optional fallback value (or function
 that provides the fallback value).

 	
 Added the _.propertyOf function generator as a mirror-world
 version of _.property.

 	
 Deprecated _.matches. It's now known by a more harmonious
 name — _.matcher.

 	
 Various and diverse code simplifications, changes for improved
 cross-platform compatibility, and edge case bug fixes.

 — August 26, 2014 — Diff — Docs

 	
 For consistency and speed across browsers, Underscore now ignores
 native array methods for forEach, map, reduce,
 reduceRight, filter, every, some,
 indexOf, and lastIndexOf. "Sparse" arrays are
 officially dead in Underscore.

 	
 Added _.iteratee to customize the iterators used by collection
 functions. Many Underscore methods will take a string argument for easier
 _.property-style lookups, an object for _.where-style
 filtering, or a function as a custom callback.

 	
 Added _.before as a counterpart to _.after.

 	
 Added _.negate to invert the truth value of a passed-in
 predicate.

 	
 Added _.noop as a handy empty placeholder function.

 	
 _.isEmpty now works with arguments objects.

 	
 _.has now guards against nullish objects.

 	
 _.omit can now take an iteratee function.

 	
 _.partition is now called with index and object.

 	
 _.matches creates a shallow clone of your object and only iterates
 over own properties.

 	
 Aligning better with the forthcoming ECMA6 Object.assign,
 _.extend only iterates over the object's own properties.

 	
 Falsey guards are no longer needed in _.extend and
 _.defaults—if the passed in argument isn't a JavaScript
 object it's just returned.

 	
 Fixed a few edge cases in _.max and _.min to
 handle arrays containing NaN (like strings or other objects)
 and Infinity and -Infinity.

 	
 Override base methods like each and some
 and they'll be used internally by other Underscore functions too.

 	
 The escape functions handle backticks (`), to deal with an
 IE ≤ 8 bug.

 	
 For consistency, _.union and _.difference now
 only work with arrays and not variadic args.

 	
 _.memoize exposes the cache of memoized values as a property
 on the returned function.

 	
 _.pick accepts iteratee and context
 arguments for a more advanced callback.

 	
 Underscore templates no longer accept an initial data object.
 _.template always returns a function now.

 	
 Optimizations and code cleanup aplenty.

 — February 10, 2014 — Diff — Docs

 	
 Underscore now registers itself for AMD (Require.js), Bower and Component,
 as well as being a CommonJS module and a regular (Java)Script.
 An ugliness, but perhaps a necessary one.

 	
 Added _.partition, a way to split a collection into two lists
 of results — those that pass and those that fail a particular predicate.

 	
 Added _.property, for easy creation of iterators that pull
 specific properties from objects. Useful in conjunction with other
 Underscore collection functions.

 	
 Added _.matches, a function that will give you a predicate
 that can be used to tell if a given object matches a list of specified
 key/value properties.

 	
 Added _.constant, as a higher-order _.identity.

 	
 Added _.now, an optimized way to get a timestamp — used
 internally to speed up debounce and throttle.

 	
 The _.partial function may now be used to partially apply
 any of its arguments, by passing _ wherever you'd like a
 placeholder variable, to be filled-in later.

 	
 The _.each function now returns a reference to the list for chaining.

 	
 The _.keys function now returns an empty array for
 non-objects instead of throwing.

 	
 … and more miscellaneous refactoring.

 — September 7, 2013 — Diff — Docs

 	
 Added an indexBy function, which fits in alongside its
 cousins, countBy and groupBy.

 	
 Added a sample function, for sampling random elements from
 arrays.

 	
 Some optimizations relating to functions that can be implemented
 in terms of _.keys (which includes, significantly,
 each on objects). Also for debounce in a tight loop.

 	
 The _.escape function no longer escapes '/'.

 — July 8, 2013 — Diff — Docs

 	
 Removed unzip, as it's simply the application of zip
 to an array of arguments. Use _.zip.apply(_, list) to
 transpose instead.

 — July 6, 2013 — Diff — Docs

 	
 Added a new unzip function, as the inverse of _.zip.

 	
 The throttle function now takes an options argument,
 allowing you to disable execution of the throttled function on either
 the leading or trailing edge.

 	
 A source map is now supplied for easier debugging of the minified
 production build of Underscore.

 	
 The defaults function now only overrides undefined
 values, not null ones.

 	
 Removed the ability to call _.bindAll with no method name
 arguments. It's pretty much always wiser to white-list the names of
 the methods you'd like to bind.

 	
 Removed the ability to call _.after with an invocation count
 of zero. The minimum number of calls is (naturally) now 1.

 — January 30, 2013 — Diff — Docs

 	
 Added _.findWhere, for finding the first element in a list
 that matches a particular set of keys and values.

 	
 Added _.partial, for partially applying a function without
 changing its dynamic reference to this.

 	
 Simplified bind by removing some edge cases involving
 constructor functions. In short: don't _.bind your
 constructors.

 	
 A minor optimization to invoke.

 	
 Fix bug in the minified version due to the minifier incorrectly
 optimizing-away isFunction.

 — December 4, 2012 — Diff — Docs

 	
 Improved Underscore compatibility with Adobe's JS engine that can be
 used to script Illustrator, Photoshop, and friends.

 	
 Added a default _.identity iterator to countBy and
 groupBy.

 	
 The uniq function can now take array, iterator, context
 as the argument list.

 	
 The times function now returns the mapped array of iterator
 results.

 	
 Simplified and fixed bugs in throttle.

 — October 6, 2012 — Diff — Docs

 	
 For backwards compatibility, returned to pre-1.4.0 behavior when
 passing null to iteration functions. They now become no-ops
 again.

 — October 1, 2012 — Diff — Docs

 	
 Fixed a 1.4.0 regression in the lastIndexOf function.

 — September 27, 2012 — Diff — Docs

 	
 Added a pairs function, for turning a JavaScript object
 into [key, value] pairs ... as well as an object
 function, for converting an array of [key, value] pairs
 into an object.

 	
 Added a countBy function, for counting the number of objects
 in a list that match a certain criteria.

 	
 Added an invert function, for performing a simple inversion
 of the keys and values in an object.

 	
 Added a where function, for easy cases of filtering a list
 for objects with specific values.

 	
 Added an omit function, for filtering an object to remove
 certain keys.

 	
 Added a random function, to return a random number in a
 given range.

 	
 _.debounce'd functions now return their last updated value,
 just like _.throttle'd functions do.

 	
 The sortBy function now runs a stable sort algorithm.

 	
 Added the optional fromIndex option to indexOf and
 lastIndexOf.

 	
 "Sparse" arrays are no longer supported in Underscore iteration
 functions. Use a for loop instead (or better yet, an object).

 	
 The min and max functions may now be called on
 very large arrays.

 	
 Interpolation in templates now represents null and
 undefined as the empty string.

 	
 Underscore iteration functions no longer accept null values
 as a no-op argument. You'll get an early error instead.

 	
 A number of edge-cases fixes and tweaks, which you can spot in the
 diff.
 Depending on how you're using Underscore, 1.4.0 may be more
 backwards-incompatible than usual — please test when you upgrade.

 — April 10, 2012 — Diff — Docs

 	
 Many improvements to _.template, which now provides the
 source of the template function as a property, for potentially
 even more efficient pre-compilation on the server-side. You may now
 also set the variable option when creating a template,
 which will cause your passed-in data to be made available under the
 variable you named, instead of using a with statement —
 significantly improving the speed of rendering the template.

 	
 Added the pick function, which allows you to filter an
 object literal with a whitelist of allowed property names.

 	
 Added the result function, for convenience when working
 with APIs that allow either functions or raw properties.

 	
 Added the isFinite function, because sometimes knowing that
 a value is a number just ain't quite enough.

 	
 The sortBy function may now also be passed the string name
 of a property to use as the sort order on each object.

 	
 Fixed uniq to work with sparse arrays.

 	
 The difference function now performs a shallow flatten
 instead of a deep one when computing array differences.

 	
 The debounce function now takes an immediate
 parameter, which will cause the callback to fire on the leading
 instead of the trailing edge.

 — January 23, 2012 — Diff — Docs

 	
 Added an _.has function, as a safer way to use hasOwnProperty.

 	
 Added _.collect as an alias for _.map. Smalltalkers, rejoice.

 	
 Reverted an old change so that _.extend will correctly copy
 over keys with undefined values again.

 	
 Bugfix to stop escaping slashes within interpolations in _.template.

 — January 11, 2012 — Diff — Docs

 	
 Removed AMD (RequireJS) support from Underscore. If you'd like to use
 Underscore with RequireJS, you can load it as a normal script, wrap
 or patch your copy, or download a forked version.

 — January 4, 2012 — Diff — Docs

 	
 You now can (and probably should, as it's simpler)
 write _.chain(list)
 instead of _(list).chain().

 	
 Fix for escaped characters in Underscore templates, and for supporting
 customizations of _.templateSettings that only define one or
 two of the required regexes.

 	
 Fix for passing an array as the first argument to an _.wrap'd function.

 	
 Improved compatibility with ClojureScript, which adds a call
 function to String.prototype.

 — December 7, 2011 — Diff — Docs

 	
 Dynamic scope is now preserved for compiled _.template functions,
 so you can use the value of this if you like.

 	
 Sparse array support of _.indexOf, _.lastIndexOf.

 	
 Both _.reduce and _.reduceRight can now be passed an
 explicitly undefined value. (There's no reason why you'd
 want to do this.)

 — November 14, 2011 — Diff — Docs

 	
 Continued tweaks to _.isEqual semantics. Now JS primitives are
 considered equivalent to their wrapped versions, and arrays are compared
 by their numeric properties only (#351).

 	
 _.escape no longer tries to be smart about not double-escaping
 already-escaped HTML entities. Now it just escapes regardless (#350).

 	
 In _.template, you may now leave semicolons out of evaluated
 statements if you wish: <% }) %> (#369).

 	
 _.after(callback, 0) will now trigger the callback immediately,
 making "after" easier to use with asynchronous APIs (#366).

 — October 24, 2011 — Diff — Docs

 	
 Several important bug fixes for _.isEqual, which should now
 do better on mutated Arrays, and on non-Array objects with
 length properties. (#329)

 	
 James Burke
 contributed Underscore exporting for AMD module loaders, and
 Tony Lukasavage
 for Appcelerator Titanium.
 (#335, #338)

 	
 You can now _.groupBy(list, 'property') as a shortcut for
 grouping values by a particular common property.

 	
 _.throttle'd functions now fire immediately upon invocation,
 and are rate-limited thereafter (#170, #266).

 	
 Most of the _.is[Type] checks no longer ducktype.

 	
 The _.bind function now also works on constructors, a-la
 ES5 ... but you would never want to use _.bind on a
 constructor function.

 	
 _.clone no longer wraps non-object types in Objects.

 	
 _.find and _.filter are now the preferred names for
 _.detect and _.select.

 — October 5, 2011 — Diff — Docs

 	
 The _.isEqual function now
 supports true deep equality comparisons, with checks for cyclic structures,
 thanks to Kit Cambridge.

 	
 Underscore templates now support HTML escaping interpolations, using
 <%- ... %> syntax.

 	
 Ryan Tenney contributed _.shuffle, which uses a modified
 Fisher-Yates to give you a shuffled copy of an array.

 	
 _.uniq can now be passed an optional iterator, to determine by
 what criteria an object should be considered unique.

 	
 _.last now takes an optional argument which will return the last
 N elements of the list.

 	
 A new _.initial function was added, as a mirror of _.rest,
 which returns all the initial values of a list (except the last N).

 — July 13, 2011 — Diff — Docs
Added _.groupBy, which aggregates a collection into groups of like items.
 Added _.union and _.difference, to complement the
 (re-named) _.intersection.
 Various improvements for support of sparse arrays.
 _.toArray now returns a clone, if directly passed an array.
 _.functions now also returns the names of functions that are present
 in the prototype chain.

 — April 18, 2011 — Diff — Docs
Added _.after, which will return a function that only runs after
 first being called a specified number of times.
 _.invoke can now take a direct function reference.
 _.every now requires an iterator function to be passed, which
 mirrors the ES5 API.
 _.extend no longer copies keys when the value is undefined.
 _.bind now errors when trying to bind an undefined value.

 — March 20, 2011 — Diff — Docs
Added an _.defaults function, for use merging together JS objects
 representing default options.
 Added an _.once function, for manufacturing functions that should
 only ever execute a single time.
 _.bind now delegates to the native ES5 version,
 where available.
 _.keys now throws an error when used on non-Object values, as in
 ES5.
 Fixed a bug with _.keys when used over sparse arrays.

 — January 9, 2011 — Diff — Docs
Improved compliance with ES5's Array methods when passing null
 as a value. _.wrap now correctly sets this for the
 wrapped function. _.indexOf now takes an optional flag for
 finding the insertion index in an array that is guaranteed to already
 be sorted. Avoiding the use of .callee, to allow _.isArray
 to work properly in ES5's strict mode.

 — December 1, 2010 — Diff — Docs
In CommonJS, Underscore may now be required with just:
var _ = require("underscore").
 Added _.throttle and _.debounce functions.
 Removed _.breakLoop, in favor of an ES5-style un-break-able
 each implementation — this removes the try/catch, and you'll now have
 better stack traces for exceptions that are thrown within an Underscore iterator.
 Improved the isType family of functions for better interoperability
 with Internet Explorer host objects.
 _.template now correctly escapes backslashes in templates.
 Improved _.reduce compatibility with the ES5 version:
 if you don't pass an initial value, the first item in the collection is used.
 _.each no longer returns the iterated collection, for improved
 consistency with ES5's forEach.

 — October 15, 2010 — Diff — Docs
Fixed _.contains, which was mistakenly pointing at
 _.intersect instead of _.include, like it should
 have been. Added _.unique as an alias for _.uniq.

 — October 5, 2010 — Diff — Docs
Improved the speed of _.template, and its handling of multiline
 interpolations. Ryan Tenney contributed optimizations to many Underscore
 functions. An annotated version of the source code is now available.

 — August 18, 2010 — Diff — Docs
The method signature of _.reduce has been changed to match
 the ES5 signature, instead of the Ruby/Prototype.js version.
 This is a backwards-incompatible change. _.template may now be
 called with no arguments, and preserves whitespace. _.contains
 is a new alias for _.include.

 — June 22, 2010 — Diff — Docs
Andri Möll contributed the _.memoize
 function, which can be used to speed up expensive repeated computations
 by caching the results.

 — June 14, 2010 — Diff — Docs
Patch that makes _.isEqual return false if any property
 of the compared object has a NaN value. Technically the correct
 thing to do, but of questionable semantics. Watch out for NaN comparisons.

 — March 23, 2010 — Diff — Docs
Fixes _.isArguments in recent versions of Opera, which have
 arguments objects as real Arrays.

 — March 19, 2010 — Diff — Docs
Bugfix for _.isEqual, when comparing two objects with the same
 number of undefined keys, but with different names.

 — March 18, 2010 — Diff — Docs
Things have been stable for many months now, so Underscore is now
 considered to be out of beta, at 1.0. Improvements since 0.6
 include _.isBoolean, and the ability to have _.extend
 take multiple source objects.

 — February 24, 2010 — Diff — Docs
Major release. Incorporates a number of
 Mile Frawley's refactors for
 safer duck-typing on collection functions, and cleaner internals. A new
 _.mixin method that allows you to extend Underscore with utility
 functions of your own. Added _.times, which works the same as in
 Ruby or Prototype.js. Native support for ES5's Array.isArray,
 and Object.keys.

 — January 28, 2010 — Diff — Docs
Fixed Underscore's collection functions to work on
 NodeLists and
 HTMLCollections
 once more, thanks to
 Justin Tulloss.

 — January 20, 2010 — Diff — Docs
A safer implementation of _.isArguments, and a
 faster _.isNumber,
thanks to
 Jed Schmidt.

 — January 18, 2010 — Diff — Docs
Customizable delimiters for _.template, contributed by
 Noah Sloan.

 — January 9, 2010 — Diff — Docs
Fix for a bug in MobileSafari's OOP-wrapper, with the arguments object.

 — January 5, 2010 — Diff — Docs
Fix for multiple single quotes within a template string for
 _.template. See:
 Rick Strahl's blog post.

 — January 1, 2010 — Diff — Docs
New implementations of isArray, isDate, isFunction,
 isNumber, isRegExp, and isString, thanks to
 a suggestion from
 Robert Kieffer.
 Instead of doing Object#toString
 comparisons, they now check for expected properties, which is less safe,
 but more than an order of magnitude faster. Most other Underscore
 functions saw minor speed improvements as a result.
 Evgeniy Dolzhenko
 contributed _.tap,
 similar to Ruby 1.9's,
 which is handy for injecting side effects (like logging) into chained calls.

 — December 9, 2009 — Diff — Docs
Added an _.isArguments function. Lots of little safety checks
 and optimizations contributed by
 Noah Sloan and
 Andri Möll.

 — December 7, 2009 — Diff — Docs
[API Changes] _.bindAll now takes the context object as
 its first parameter. If no method names are passed, all of the context
 object's methods are bound to it, enabling chaining and easier binding.
 _.functions now takes a single argument and returns the names
 of its Function properties. Calling _.functions(_) will get you
 the previous behavior.
 Added _.isRegExp so that isEqual can now test for RegExp equality.
 All of the "is" functions have been shrunk down into a single definition.
 Karl Guertin contributed patches.

 — December 6, 2009 — Diff — Docs
Added isDate, isNaN, and isNull, for completeness.
 Optimizations for isEqual when checking equality between Arrays
 or Dates. _.keys is now 25%–2X faster (depending on your
 browser) which speeds up the functions that rely on it, such as _.each.

 — November 30, 2009 — Diff — Docs
Added the range function, a port of the
 Python
 function of the same name, for generating flexibly-numbered lists
 of integers. Original patch contributed by
 Kirill Ishanov.

 — November 19, 2009 — Diff — Docs
Added rest for Arrays and arguments objects, and aliased
 first as head, and rest as tail,
 thanks to Luke Sutton's patches.
 Added tests ensuring that all Underscore Array functions also work on
 arguments objects.

 — November 18, 2009 — Diff — Docs
Added isString, and isNumber, for consistency. Fixed
 _.isEqual(NaN, NaN) to return true (which is debatable).

 — November 9, 2009 — Diff — Docs
Started using the native StopIteration object in browsers that support it.
 Fixed Underscore setup for CommonJS environments.

 — November 9, 2009 — Diff — Docs
Renamed the unwrapping function to value, for clarity.

 — November 8, 2009 — Diff — Docs
Chained Underscore objects now support the Array prototype methods, so
 that you can perform the full range of operations on a wrapped array
 without having to break your chain. Added a breakLoop method
 to break in the middle of any Underscore iteration. Added an
 isEmpty function that works on arrays and objects.

 — November 7, 2009 — Diff — Docs
All Underscore functions can now be called in an object-oriented style,
 like so: _([1, 2, 3]).map(...);. Original patch provided by
 Marc-André Cournoyer.
 Wrapped objects can be chained through multiple
 method invocations. A functions method
 was added, providing a sorted list of all the functions in Underscore.

 — October 31, 2009 — Diff — Docs
Added the JavaScript 1.8 function reduceRight. Aliased it
 as foldr, and aliased reduce as foldl.

 — October 29, 2009 — Diff — Docs
Now runs on stock Rhino
 interpreters with: load("underscore.js").
 Added identity as a utility function.

 — October 29, 2009 — Diff — Docs
All iterators are now passed in the original collection as their third
 argument, the same as JavaScript 1.6's forEach. Iterating over
 objects is now called with (value, key, collection), for details
 see _.each.

 — October 29, 2009 — Diff — Docs
Added Dmitry Baranovskiy's
 comprehensive optimizations, merged in
 Kris Kowal's patches to make Underscore
 CommonJS and
 Narwhal compliant.

 — October 28, 2009 — Diff — Docs
Added compose and lastIndexOf, renamed inject to
 reduce, added aliases for inject, filter,
 every, some, and forEach.

 — October 28, 2009 — Diff — Docs
Added noConflict, so that the "Underscore" object can be assigned to
 other variables.

 — October 28, 2009 — Docs
Initial release of Underscore.js.

 [image: A DocumentCloud Project]

OEBPS/cover.jpeg
UNDERSCORE.JS

OEBPS/images/00ab1a85-1f05-476f-a637-9b83945ab977.png
A DocumentCloud \ Project

