
Documentation for ApolloReact (http://dev.apollodata.com/react/) generated by docs2epub (http://javier.xyz/docs2epub/) on 2017/02/25.

[image: cover image]

 ApolloReact

 Apollo

 2017/02/25

 https://raw.githubusercontent.com/apollographql/apollo-client/master/LICENSE

 ApolloReact

 	
 Index

 	
 Initialization

 	
 Higher Order Components

 	
 Example Schema

 	
 Queries

 	
 Mutations

 	
 Receiving Updates

 	
 Cache Updates

 	
 Auth

 	
 Pagination

 	
 Optimistic UI

 	
 Fragments

 	
 Prefetching

 	
 React Native

 	
 Redux

 	
 Webpack

 	
 Server Side Rendering

Index

This is the official guide to using GraphQL in your React app with the Apollo JavaScript GraphQL client and the react-apollo integration package. For a step-by-step hands-on tutorial you can also check out the Learn Apollo website by Graphcool.

Get started now with the setup instructions.

The Apollo community builds and maintains tools designed to make it easier to use GraphQL across a range of front-end and server technologies. Although this guide focuses on the integration with React, there is a similar guide for Angular 2, and the core apollo-client JavaScript package can be used anywhere JavaScript runs.

If you are looking to use Apollo with a native mobile client, there is an iOS Client in development and plans for an Android client too. On the other hand, the React integration documented here works with React Native on both platforms without changes.

You can learn more about the Apollo project at the project's home page.

Apollo Client and React

The apollo-client Npm module is a JavaScript client for GraphQL. The goal of the package is to be:

	Incrementally adoptable, so that you can drop it into an existing JavaScript app and start using GraphQL for just part of your UI.

	Universally compatible, so that Apollo works with any build setup, any GraphQL server, and any GraphQL schema.

	Simple to get started with, you can just read this guide and get going.

	Inspectable and understandable, so that you can have great developer tools to understand exactly what is happening in your app.

	Built for interactive apps, so your users can make changes and see them reflected in the UI immediately.

	Community driven, many of the components of Apollo (including the react-apollo integration) are driven by the community and serve real-world use cases from the outset, and all projects are planned and developed in the open.

The Apollo client does more than simply run your queries against your GraphQL server. It analyzes your queries and their results to construct a client-side cache of your data, which is kept up to date as further queries and mutations are run, fetching more results from the server. This means that your UI can be internally consistent and fully up-to-date with the state on the server with the minimum number of queries required.

The best way to use apollo-client in your React app is with react-apollo, a React-specific API that's designed to take full advantage of Apollo's features. The integration provides a natural "higher-order-component" API for queries and mutations, and will keep your rendered component tree up to date with the data in the cache seamlessly. The guide you're currently reading describes react-apollo.

Compatibility

Apollo is designed to work with many of the tools used in a typical React app. In particular:

	React Native: It's supported out of the box!

	Redux: Apollo client uses Redux internally, and you can integrate it into your existing store to use your favorite Redux tools such as the dev tools or persistence libraries. You can also use it alongside any other data management library, such as MobX, without issues.

	Router-independent: You can use the library of your choice, such as React Router.

	Any GraphQL server: It doesn't matter if you use JavaScript, Ruby, Scala, or anything else to build your GraphQL server. Apollo works completely with standard GraphQL, and doesn't have any requirements for your server or schema design.

Comparison with other GraphQL clients

If you are deciding whether to use react-apollo or some other GraphQL client, it's worth considering the goals of the project, and how they compare. In particular:

	Relay is a performant, opinionated, React-specific GraphQL client built by Facebook for their mobile applications. It focuses on enabling the co-location of queries and components, and is opinionated about the design of your GraphQL schema, especially in the case of pagination. Apollo has an analogous set of features to Relay, but is designed to be a general-purpose tool that can be used with any schema or any frontend architecture. Relay's coupling to a specific kind of schema and architecture enables some benefits but with the loss of some flexibility, which also lets the Apollo community iterate more rapidly and quickly test experimental features.

	Lokka is a simple GraphQL Javascript client with a basic query cache. Apollo is more complex, but includes a much more sophisticated cache and set of advanced features around updating and refetching data.

Learn More

To learn more about Apollo, and how to use it in React, visit:

	GraphQL.org for an introduction and reference to the GraphQL language,

	Our website to learn about Apollo open source tools,

	Our Medium blog for detailed insights about GraphQL.

Initialization

Installation

To get started with Apollo and React, install the apollo-client npm package, the react-apollo integration package, and the graphql-tag library for constructing query documents:

npm install apollo-client react-apollo graphql-tag --save

If you are in an environment that does not have a global fetch implementation, make sure to install a polyfill like whatwg-fetch.

Note: You don't have to do anything special to get Apollo Client to work in React Native, just install and import it as usual.

Initialization

To get started using Apollo with React, we need to create an ApolloClient and an ApolloProvider. ApolloClient serves as a central store of query result data which caches and distributes the results of our queries. ApolloProvider wires that client into our React component hierarchy.

Creating a client

To get started, create an ApolloClient instance and point it at your GraphQL server:

import ApolloClient from 'apollo-client';

// By default, this client will send queries to the
// `/graphql` endpoint on the same host
const client = new ApolloClient();

The client takes a variety of options, but in particular, if you want to change the URL of the GraphQL server, you can create a custom NetworkInterface:

import ApolloClient, { createNetworkInterface } from 'apollo-client';

const client = new ApolloClient({
 networkInterface: createNetworkInterface({ uri: 'http://my-api.graphql.com' }),
});

ApolloClient has some other options which control the behavior of the client, and we'll see examples of their use throughout this guide.

Creating a provider

To connect your client instance to your component tree, use an ApolloProvider component. You should be sure to place the ApolloProvider somewhere high in your view hierarchy, above any places where you need to access GraphQL data.

import ApolloClient from 'apollo-client';
import { ApolloProvider } from 'react-apollo';

// Create the client as outlined above
const client = new ApolloClient();

ReactDOM.render(
 <ApolloProvider client={client}>
 <MyRootComponent />
 </ApolloProvider>,
 rootEl
)

Higher Order Components

Now that we have created an ApolloClient instance and attached it to our UI tree with ApolloProvider, we can start using the main function of react-apollo: adding GraphQL functionality to our UI components.

graphql

The graphql container is the recommended approach for fetching data or making mutations. It is a Higher Order Component for providing Apollo data to a component, or attaching mutations.

The basic usage of graphql is as follows:

import React, { Component } from 'react';
import { graphql } from 'react-apollo';
import gql from 'graphql-tag';

// MyComponent is a "presentational" or apollo-unaware component,
// It could be a simple React class:
class MyComponent extends Component {
 render() {
 return <div>...</div>;
 }
}
// Or a stateless functional component:
const MyComponent = (props) => <div>...</div>;

// Initialize GraphQL queries or mutations with the `gql` tag
const MyQuery = gql`query MyQuery { todos { text } }`;
const MyMutation = gql`mutation MyMutation { addTodo(text: "Test 123") { id } }`;

// We then can use `graphql` to pass the query results returned by MyQuery
// to MyComponent as a prop (and update them as the results change)
const MyComponentWithData = graphql(MyQuery)(MyComponent);

// Or, we can bind the execution of MyMutation to a prop
const MyComponentWithMutation = graphql(MyMutation)(MyComponent);

If you are using ES2016 decorators, you may prefer the decorator syntax:

import React, { Component } from 'react';
import { graphql } from 'react-apollo';

@graphql(MyQuery)
@graphql(MyMutation)
class MyComponent extends Component {
 render() {
 return <div>...</div>;
 }
}

In this guide, we won't use the decorator syntax to make the code more familiar, but you can always use it if you prefer.

Complete API

The graphql function takes two arguments:

	query: Required, a GraphQL document parsed with the gql tag

	config: An optional object with configuration, as described below

The config object can include one or more of the following keys:

	name: Rename the prop the higher-order-component passes down to something else

	options: Pass options about the query or mutation, documented in the queries and mutations guides

	props: Modify the props before they are passed into the child component

	withRef: Add a method to access the child component to the container, read more below

	shouldResubscribe: A function which gets called with current props and next props when props change. The function should return true if the change requires the component to resubscribe.

The graphql function returns another function, which takes any React component and returns a new React component class wrapped with the specified query. This is similar to how connect works in Redux.

For details about how to use the graphql higher-order-component in a variety of situations, read about how to use it with queries and mutations.

withApollo

withApollo is a simple higher order component which provides direct access to your ApolloClient instance as a prop to your wrapped component. This is useful if you want to do custom logic with apollo, such as calling one-off queries, without using the graphql container.

import React, { Component } from 'react';
import { withApollo } from 'react-apollo';
import ApolloClient from 'apollo-client';

class MyComponent extends Component { ... }
MyComponent.propTypes = {
 client: React.PropTypes.instanceOf(ApolloClient).isRequired,
}

const MyComponentWithApollo = withApollo(MyComponent);

// or using ES2016 decorators:
@withApollo
class MyComponent extends Component { ... }

withRef

If you need to get access to the instance of the wrapped component, you can use withRef in the options. This will allow a getWrappedInstance method on the returned component which will return the wrapped instance.

import React, { Component } from 'react';
import { graphql } from 'react-apollo';

class MyComponent extends Component { ... }

const MyComponentWithUpvote = graphql(Upvote, {
 withRef: true,
})(MyComponent);

// MyComponentWithUpvote.getWrappedInstance() returns MyComponent instance

compose

react-apollo exports a compose function. Adopting the following pattern allows you to reduce the number of reassignments you're doing every time you wrap your component with graphql and often connect from react-redux.

import { graphql, compose } from 'react-apollo';
import { connect } from 'react-redux';

export default compose(
 graphql(query, queryOptions),
 graphql(mutation, mutationOptions),
 connect(mapStateToProps, mapDispatchToProps)
)(Component);

Example Schema

In the documentation we'll show examples of using Apollo in React via the GitHunt example application.

GitHunt is a Product Hunt-style application that shows a list of GitHub repositories, sorted by votes with attached comments. The API server code demonstrates combining two data sources--a third-party API and a local database--in a single GraphQL endpoint.

The React UI, which we'll focus on in this guide, shows a lot of the techniques that you can use to build a great React UI for any GraphQL server. You can check out the full source code on GitHub or just read the snippets in the guide.

The GitHunt Schema

Most of the examples in this guide are written for the GitHunt schema. You can see the full schema written in the GraphQL Schema Language below:

This uses the exact field names returned by the GitHub API for simplicity
type Repository {
 name: String!
 full_name: String!
 description: String
 html_url: String!
 stargazers_count: Int!
 open_issues_count: Int

 # We should investigate how best to represent dates
 created_at: String!

 owner: User
}

Uses exact field names from GitHub for simplicity
type User {
 login: String!
 avatar_url: String!
 html_url: String!
}

type Comment {
 postedBy: User!
 createdAt: Float! # Actually a date
 content: String!
 repoName: String!
}

type Vote {
 vote_value: Int!
}

type Entry {
 repository: Repository!
 postedBy: User!
 createdAt: Float! # Actually a date
 score: Int!
 comments: [Comment]! # Should this be paginated?
 commentCount: Int!
 id: Int!
 vote: Vote!
}

To select the sort order of the feed
enum FeedType {
 HOT
 NEW
 TOP
}

type Query {
 # For the home page, the offset arg is optional to get a new page of the feed
 feed(type: FeedType!, offset: Int, limit: Int): [Entry]

 # For the entry page
 entry(repoFullName: String!): Entry

 # To display the current user on the submission page, and the navbar
 currentUser: User
}

Type of vote
enum VoteType {
 UP
 DOWN
 CANCEL
}

type Mutation {
 # Submit a new repository
 submitRepository(repoFullName: String!): Entry

 # Vote on a repository
 vote(repoFullName: String!, type: VoteType!): Entry

 # Comment on a repository
 submitComment(repoFullName: String!, commentContent: String!): Comment
}

Queries

On this page, you can learn how to use react-apollo to attach GraphQL query results to your React UI. You can read about GraphQL queries themselves in detail at graphql.org.

Note that when using react-apollo, you don't have to learn anything special about the query syntax, since everything is just standard GraphQL. Anything you can type into the GraphiQL query explorer, you can also put into your react-apollo code.

Basic Queries

When we are running a basic query we can use the graphql container in a very simple way. We simply parse our query into a GraphQL document using the graphql-tag library, and then pass it into the graphql container as the first argument.

For instance, in GitHunt, we want to display the currently logged-in user in the Profile component:

import React, { Component, PropTypes } from 'react';
import { graphql } from 'react-apollo';
import gql from 'graphql-tag';

class Profile extends Component { ... }
Profile.propTypes = {
 data: PropTypes.shape({
 loading: PropTypes.bool.isRequired,
 currentUser: PropTypes.object,
 }).isRequired,
};

// We use the gql tag to parse our query string into a query document
const CurrentUserForLayout = gql`
 query CurrentUserForLayout {
 currentUser {
 login
 avatar_url
 }
 }
`;

const ProfileWithData = graphql(CurrentUserForLayout)(Profile);

When we use graphql in this simple way with a GraphQL query document, ApolloClient.watchQuery is used under the hood to execute the query before the results are passed to the child component in a prop called data. In addition to the currentUser field selected in the query, the data prop also includes a field called loading, a Boolean value indicating if the the query is currently being loaded from the server.

The data.currentUser sub-prop will change as what the client knows about the current user changes over time. That information is stored in Apollo Client's global cache, so if some other query fetches new information about the current user, this component will update to remain consistent. You can read more about techniques to bring the cache up to date with the server in the article on the subject.

The structure of the data prop

As seen above, graphql will pass the result of the query to the wrapped component in a prop called data. It will also pass through all of the props of the parent container.

For queries, the shape of the data prop is the following:

	...fields: One key for each root field in the query.

	loading: This field is true if there is currently a query fetch in flight, including after calling refetch. false otherwise.

	error: An ApolloError object that represents the different possible errors that might happen when running a query.

	...QuerySubscription: All of the methods from the Apollo QuerySubscription object, including stopPolling, startPolling, refetch, fetchMore, and others.

Here's a complete example. For a query like this:

query getUserAndLikes($id: ID!) {
 user(userId: $id) { name }
 likes(userId: $id) { count }
}

You would get a prop like:

data: {
 user: { name: "James" },
 likes: { count: 10 },
 loading: false,
 error: null,
 refetch() { ... },
 fetchMore() { ... },
 startPolling() { ... },
 stopPolling() { ... },
 // ... more methods from the QuerySubscription object
}

If you use the props option to the wrapper to specify custom props for your child component, this object will be passed to the props option on the parameter named data.

Query options

If you want to configure the query, you can provide an options key on the second argument to graphql, and your options will be passed along to ApolloClient.watchQuery. If your query takes variables, this is the place to pass them in:

// Suppose our profile query took an avatar size
const CurrentUserForLayout = gql`
 query CurrentUserForLayout($avatarSize: Int!) {
 currentUser {
 login
 avatar_url(avatarSize: $avatarSize)
 }
 }
`;

const ProfileWithData = graphql(CurrentUserForLayout, {
 options: { variables: { avatarSize: 100 } },
})(Profile);

Typically, variables to the query will be configured by the props of the wrapper component; where ever the component is used in your application, the caller would pass arguments. So options can be a function that takes the props of the outer component (ownProps by convention):

// The caller could do something like:
<ProfileWithData avatarSize={300} />

// And our HOC could look like:
const ProfileWithData = graphql(CurrentUserForLayout, {
 options: ({ avatarSize }) => ({ variables: { avatarSize } }),
})(Profile);

By default, graphql will attempt to pick up any missing variables from the query from ownProps. So in our example above, we could have used the simpler ProfileWithData = graphql(CurrentUserForLayout)(Profile);. However, if you need to change the name of a variable, or compute the value (or just want to be more explicit about things), the options function is the place to do it.

Other watchQuery options

You may want to configure the options used by Apollo's watchQuery using options:

const ProfileWithData = graphql(CurrentUserForLayout, {
 // See the watchQuery API for the options you can provide here
 options: { pollInterval: 20000 },
})(Profile);

All of these function-based forms of options will be recalculated whenever the props change.

Skipping an operation

Sometimes you may want to skip a query based on the available information. To do this you can pass skip: true as part of the options. This is useful if you want to ignore a query if a user isn't authenticated:

const ProfileWithData = graphql(CurrentUserForLayout, {
 skip: (ownProps) => !ownProps.authenticated,
})(Profile);

This can also be represented as an object instead of a method that takes props:

const ProfileWithData = graphql(CurrentUserForLayout, {
 skip: true,
})(Profile);

This does not pass data or run the options or props methods if passed. It effectively bypasses the HOC.

Controlling child props

By default, graphql will provide a data prop to the wrapped component with various information about the state of the query. We'll also see that mutations provide a callback on the mutate prop. Thus, it's possible to write your whole app just using these default prop names.

If you want to decouple your UI components from Apollo and make them more reusable, you may want to modify these default props into your own custom objects and functions.

Using name

If you want to change the name of the default data prop, but keep the exact same shape, you can use name option to the graphql container. This is especially useful for nested graphql containers, where the data prop would clash between them.

import React, { Component, PropTypes } from 'react';
import { graphql } from 'react-apollo';
import gql from 'graphql-tag';

class Profile extends Component { ... }
Profile.propTypes = {
 CurrentUserForLayout: PropTypes.shape({
 loading: PropTypes.bool.isRequired,
 currentUser: PropTypes.object,
 }).isRequired,
};

const CurrentUserForLayout = gql`
 query CurrentUserForLayout {
 currentUser {
 login
 avatar_url
 }
 }
`;

// We want the prop to be called 'CurrentUserForLayout' instead of data
const ProfileWithData = graphql(CurrentUserForLayout, {
 name: 'CurrentUserForLayout'
})(Profile);

Using props

If you want complete control over the props of the child component, use the props option to map the query data object into any number of props that will be passed into the child:

import React, { Component, PropTypes } from 'react';
import { graphql } from 'react-apollo';
import gql from 'graphql-tag';

// Here Profile has a more generic API, that's not coupled to Apollo or the
// shape of the query that we've used
class Profile extends Component { ... }
Profile.propTypes = {
 userLoading: PropTypes.bool.isRequired,
 user: PropTypes.object,
 refetchUser: PropTypes.func,
};

const CurrentUserForLayout = gql`
 query CurrentUserForLayout {
 currentUser {
 login
 avatar_url
 }
 }
`;

const ProfileWithData = graphql(CurrentUserForLayout, {
 // ownProps are the props that are passed into the `ProfileWithData`
 // when it is used by a parent component
 props: ({ ownProps, data: { loading, currentUser, refetch } }) => ({
 userLoading: loading,
 user: currentUser,
 refetchUser: refetch,
 }),
})(Profile);

This style of usage leads to the greatest decoupling between your presentational component (Profile) and Apollo.

Mutations

In addition to fetching data using queries, Apollo also handles GraphQL mutations. Mutations are identical to queries in syntax, the only difference being that you use the keyword mutation instead of query to indicate that the root fields on this query are going to be performing writes to the backend.

mutation {
 submitRepository(repoFullName: "apollostack/apollo-client") {
 id
 repoName
 }
}

GraphQL mutations represent two things in one query string:

	The mutation field name with arguments, submitRepository, which represents the actual operation to be done on the server

	The fields you want back from the result of the mutation to update the client: { id, repoName }

The above mutation will submit a new GitHub repository to GitHunt, saving an entry to the database. The result might be:

{
 "data": {
 "submitRepository": {
 "id": "123",
 "repoName": "apollostack/apollo-client"
 }
 }
}

When we use mutations in Apollo, the result is typically integrated into the cache automatically based on the id of the result, which in turn updates the UI automatically, so we often don't need to explicitly handle the results. In order for the client to correctly do this, we need to ensure we select the necessary fields in the result. One good strategy can be to simply ask for any fields that might have been affected by the mutation.

Basic Mutations

Using graphql with mutations makes it easy to bind actions to components. Unlike queries, which provide a complicated object with lots of metadata and methods, mutations provide only a simple function to the wrapped component, in the mutate prop.

import React, { Component, PropTypes } from 'react';
import { graphql } from 'react-apollo';
import gql from 'graphql-tag';

class NewEntry extends Component { ... }
NewEntry.propTypes = {
 mutate: PropTypes.func.isRequired,
};

const submitRepository = gql`
 mutation submitRepository {
 submitRepository(repoFullName: "apollostack/apollo-client") {
 createdAt
 }
 }
`;

const NewEntryWithData = graphql(submitRepository)(NewEntry);

If you need more than one mutation on a component, you make a graphql container for each:

const NewEntryWithData = graphql(submitNewUser, {name : 'newUserMutation'})(
 graphql(submitRepository, {name: 'newRepositoryMutation'})(Component)
)

Note the use of the name option on the graphql() call to name the prop that will receive the mutation function for each mutation (by default that name is 'mutate').

Calling mutations

Most mutations will require arguments in the form of query variables, and you may wish to also provide other options to ApolloClient#mutate.

You can directly pass options to the default mutate prop when you call it in the wrapped component:

import React, { Component, PropTypes } from 'react';
import { graphql } from 'react-apollo';
import gql from 'graphql-tag';

class NewEntry extends Component {
 onClick() {
 this.props.mutate({ variables: { repoFullName: 'apollostack/apollo-client' } })
 .then(({ data }) => {
 console.log('got data', data);
 }).catch((error) => {
 console.log('there was an error sending the query', error);
 });
 }
 render() {
 return <div onClick={this.onClick.bind(this)}>Click me</div>;
 }
}
NewEntry.propTypes = {
 mutate: PropTypes.func.isRequired,
};

const submitRepository = gql`
 mutation submitRepository($repoFullName: String!) {
 submitRepository(repoFullName: $repoFullName) {
 createdAt
 }
 }
`;

const NewEntryWithData = graphql(submitRepository)(NewEntry);

However, typically you'd want to keep the concern of formatting the mutation options out of your presentational component. The best way to do this is to use the props argument to wrap the mutation in a function that accepts exactly the arguments it needs:

import React, { Component, PropTypes } from 'react';
import { graphql } from 'react-apollo';
import gql from 'graphql-tag';

class NewEntry extends Component {
 render() {
 return <div onClick={() => this.props.submit('apollostack/apollo-client')}>Click me</div>;
 }
}
NewEntry.propTypes = {
 submit: PropTypes.func.isRequired,
};

const submitRepository = /* as above */;

const NewEntryWithData = graphql(submitRepository, {
 props: ({ mutate }) => ({
 submit: (repoFullName) => mutate({ variables: { repoFullName } }),
 }),
})(NewEntry);

Note that, in general, you don't need to use the results from the mutation callback directly. Instead you should usually rely on Apollo's id-based cache updating to take care of it for you. If that doesn't cover your needs, you can pass an updateQueries callback to update any relevant queries with your mutation results.That way, you can keep your UI components as stateless and declarative as possible.

Optimistic UI

Sometimes your client code can easily predict the result of a successful mutation even before the server responds with the result. For instance, in GitHunt, when a user comments on a repository, we want to show the new comment in the UI immediately, without waiting on the latency of a round trip to the server, giving the user a faster UI experience. This is what we call Optimistic UI. This is possible with Apollo if the client can predict an Optimistic Response for the mutation.

All you need to do is specify the optimisticResponse option. This "fake result" will be used to update active queries immediately, in the same way that the server's mutation response will. The optimistic patches are stored in a separate place in the cache, so once the actual mutation returns, the relevant optimistic update is automatically thrown away and replaced with the real result.

import React, { Component, PropTypes } from 'react';
import { graphql } from 'react-apollo';
import gql from 'graphql-tag';

class CommentPage extends Component { ... }
CommentPage.propTypes = {
 submit: PropTypes.func.isRequired,
};

const submitComment = gql`
 mutation submitComment($repoFullName: String!, $commentContent: String!) {
 submitComment(repoFullName: $repoFullName, commentContent: $commentContent) {
 postedBy {
 login
 html_url
 }
 createdAt
 content
 }
 }
`;

const CommentPageWithData = graphql(submitComment, {
 props: ({ ownProps, mutate }) => ({
 submit: ({ repoFullName, commentContent }) => mutate({
 variables: { repoFullName, commentContent },
 optimisticResponse: {
 __typename: 'Mutation',
 submitComment: {
 __typename: 'Comment',
 // Note that we can access the props of the container at `ownProps`
 postedBy: ownProps.currentUser,
 createdAt: +new Date,
 content: commentContent,
 },
 },
 });
 }),
})(CommentPage);

For the example above, it is easy to construct an optimistic response, since we know the shape of the new comment and can approximately predict the created data. The optimistic response doesn't have to be exactly correct because it will always will be replaced with the real result from the server, but it should be close enough to make users feel like there is no delay.

As this comment is new and not visible in the UI before the mutation, it won't appear automatically on the screen as a result of the mutation. You can use updateQueries to make it appear in this case (and this is what we do in GitHunt).

Designing mutation results

When people talk about GraphQL, they often focus on the data fetching side of things, because that's where GraphQL brings the most value. Mutations can be pretty elegant if done well, but the principles of designing good mutations, and especially good mutation result types (__typename in the above example), are not yet well-understood in the open source community. So when you are working with mutations it might often feel like you need to make a lot of application-specific decisions.

In GraphQL, mutations can return any type, and that type can be queried just like a regular GraphQL query. So the question is - what type should a particular mutation return?

In most cases, the data available from a mutation result should be the server developer's best guess of the data a client would need to understand what happened on the server. For example, a mutation that creates a new comment on a blog post might return the comment itself. A mutation that reorders an array might need to return the whole array.

Updating the cache after a mutation

Most of the time it is not necessary to tell Apollo which parts of the cache to update. It can automatically figure out which objects have changed if you use dataIdFromObject. However, there are cases like inserting or deleting items from a list, which cannot be done that way. In those cases, you have a few options:

	use refetchQueries to completely refetch parts of your cache after the mutation has completed.

	use updateQueries to specify how the mutation result affects results of previous queries in the cache.

Receiving Updates

Apollo Client caches the results of queries and then uses this cache in order to resolve specific parts of queries. However, what happens if the information in our cache goes stale? How do we make sure to update the cache if information changes on the server? How will our UI update to reflect this new information? This section will attempt to answer those questions.

A momentarily stale cache is an unavoidable problem. There's no feasible way to have a client-side cache and make sure that the cache will always immediately reflect the information on the server. For most applications, this isn't too much of an issue: your UI may be slightly out-of-date temporarily but it'll sync soon enough.

There are a few strategies you can implement to make sure that Apollo Client is eventually consistent with the information available to your server. These are: refetches, polling queries and GraphQL subscriptions.

Refetch

Refetches are the simplest way to force a portion of your cache to reflect the information available to your server. Essentially, a refetch forces a query to immediately hit the server again, bypassing the cache. The result of this query, just like all other query results, updates the information available in the cache, which updates all of the query results on the page.

For example, using with the GitHunt schema, we might have the following component implementation:

import React, { Component } from 'react';
import gql from 'grapqhl-tag';
import { graphql } from 'react-apollo';

class Feed extends Component {
 // ...
 onRefreshClicked() {
 this.props.data.refetch();
 }
 // ...
}

const FeedEntries = gql`
 query FeedEntries($type: FeedType!, $offset: Int, $limit: Int) {
 feed($type: NEW, offset: $offset, limit: $limit) {
 createdAt
 commentCount
 score
 id
 respository {
 # etc.
 }
 }
 }`;

const FeedWithData = graphql(FeedEntries)(Feed);

Suppose we have a "refresh" button somewhere on the page and when that button is clicked, the onRefreshClicked method is called on our component. We have the method this.props.data.refetch, which allows us to refetch the query associated with the FeedCompoment. This means that instead of resolving information about the feed field from the cache (even if we have it!), the query will hit the server and will update the cache with new results from the server.

If there's been some kind of update on the server (e.g. a new repository added to the feed), the Apollo Client store will get the update and the UI will re-render as necessary.

In order for refetches to be a viable strategy, you need to know when to refetch a query. There are few different ways you could do this. For example, you could imagine refetching the whole feed when the user adds a new repository to it.

Another common situation where a refetch might be necessary is when a mutation changes data that was previously fetched by a given query. Adding comments to a post, for example. In this case you can use refetchQueries and/or updateQueries options for the mutation.

But, there are cases in which responding to user input or a mutation to update the UI doesn't help, for example if some other user decides to insert a repository into the GitHunt feed and we want to show it. Our client has no idea that this has happened and won't see the new feed item until the page is refreshed. One solution to that problem is polling.

Polling

If you have a query whose results can change pretty frequently, as the result of other users sending updates to the server, it makes sense to consider making a polling query. A polling query is fired on a particular time interval, and works similarly to a refetch.

Continuing with our refetch example, we can add a polling interval simply by adding one option to our query:

const FeedWithData = graphql(FeedEntries, {
 options: { pollInterval: 20000 },
})(Feed);

The pollInterval option to a query sets a time interval in milliseconds, on which the query will be refetched. In this case, Apollo will take care of refetching this query every twenty seconds, making sure that your UI is only 20 seconds out of date at any given moment.

Generally, you shouldn't have polling intervals that are very small, say, less than 10 seconds. If you have data that changes frequently and it needs to reflect in the UI immediately, you should use GraphQL subscriptions, a feature coming soon to Apollo Client.

Subscriptions

Subscriptions allow you to get near-realtime updates in your UI. Unlike polling, subscriptions are push-based, which means the server pushes updates to the client as soon as they are available. Subscriptions are more difficult to set up than polling, but they allow for more fine-grained control over updates, faster update times and may reduce the load on the server.

Building on our feedEntry example from above, we can make the score field update in realtime by adding a subscription to it:

const SUBSCRIPTION_QUERY = gql`
 subscription scoreUpdates ($entryIds: [Int]){
 newScore(entryIds: $entryIds){
 id
 score
 }
 }
`;

class Feed extends Component {
 // ...
 componentWillReceiveProps(newProps) {
 if (!newProps.data.loading) {
 if (this.subscription) {
 if (newProps.data.feed !== this.props.data.feed) {
 // if the feed has changed, we need to unsubscribe before resubscribing
 this.subscription.unsubscribe();
 } else {
 // we already have an active subscription with the right params
 return;
 }
 }
 const entryIds = newProps.data.feed.map(item => item.id);
 this.subscription = newProps.data.subscribeToMore({
 document: SUBSCRIPTION_QUERY,
 variables: { entryIds },

 // this is where the magic happens.
 updateQuery: (previousResult, { subscriptionData }) => {
 const newScoreEntry = subscriptionData.data.newScore;
 const newResult = clonedeep(previousResult); // never mutate state!
 // update the score of the affected entry
 newResult.feed = newResult.feed.forEach(entry => {
 if(entry.id === newScoreEntry.id) {
 entry.score = newScoreEntry.score;
 return;
 }
 });
 return newResult;
 },
 onError: (err) => console.error(err),
 });
 }

 }
 // ...
}

In the example above, we keep the scores of all entries in the Feed component updated by making a subscription that lists all the ids of the feed entries currently displayed in the component. Every time a score is updated, the server will send a single response which contains an entry id and the new score.

subscribeToMore is a convenient way to update the result of a single query with a subscription. The updateQuery function passed to subscribeToMore runs every time a new subscription result arrives, and it's responsible for updating the query result.

The subscribeToMore subscription is stopped automatically when its dependent query is stopped, so we don't need to unsubscribe manually. We do however need to unsubscribe manually if the props changed and we need to make a new subscription with different variables.

For a more in-depth introduction to subscriptions in GraphQL, you may find our blog post on the topic interesting.

Cache Updates

Apollo performs two important core tasks: executing queries and mutations, and caching the results.

Thanks to Apollo's store, it's possible for the results of a query or mutation to update your UI in all the right places. In many cases it's possible for that to happen automatically, whereas in others you need to help the client out a little in doing so.

Normalization with dataIdFromObject

While Apollo can do basic caching based on the shape of GraphQL queries and their results, Apollo won't be able to associate objects fetched by different queries without additional information about the identities of the objects returned from the server. This is referred to as cache normalization. You can read about our caching model in detail in our blog post, "GraphQL Concepts Visualized".

By default, Apollo does not use object IDs at all, doing caching based only on the path to the object from the root query. However, if you specify a function to generate IDs from each object, and supply it as the dataIdFromObject in the ApolloClient constructor, you can decide how Apollo will identify and de-duplicate the objects returned from the server.

import ApolloClient from 'apollo-client';

// If your database has unique IDs across all types of objects, you can use
// a very simple function!
// Remember: You'll need to ensure that you select IDs in every query where
// you need the results to be normalized.
const client = new ApolloClient({
 dataIdFromObject: o => o.id
});

// If the IDs are only unique per type (this is typical if an ID is just an
// ID out of a database table), you can use the `__typename` field to scope it.
// This is a GraphQL field that's automatically available, but you do need
// to query for it also.
const client = new ApolloClient({
 dataIdFromObject: (result) => {
 if (result.id && result.__typename) {
 return result.__typename + result.id;
 }

 // Make sure to return null if this object doesn't have an ID
 return null;
 },
});

These IDs allow Apollo Client to reactively tell all queries that fetched a particular object about updates to that part of the store.

So to do dataIdFromObject most concisely, your client initialization might look like this:

import ApolloClient, {createNetworkInterface} from 'apollo-client'

const networkInterface = createNetworkInterface('http://localhost:3000/graphql') // TBD: Need to provide the right path for production

const apolloClient = new ApolloClient({
 networkInterface: networkInterface,
 addTypename: true,
 dataIdFromObject: (result) => {
 if (result.id && result.__typename) {
 return result.__typename + result.id
 }
 return null
 }
})

In some cases, just using dataIdFromObject is not enough for your application UI to update correctly. For example, if you want to add something to a list of objects without refetching the entire list, or if there are some objects that to which you can't assign an object identifier, Apollo Client cannot update existing queries for you.

In those cases you have to use other features like fetchMore or the other methods listed on this page in order to make sure that your queries are updated with the right information and your UI updates correctly.

Cache redirects with customResolvers

In some cases, a query requests data that already exists in the client store under a different key. A very common example of this is when your UI has a list view and a detail view that both use the same data. The list view might run the following query:

query ListView {
 books {
 id
 title
 abstract
 }
}

When a specific book is selected, the detail view displays an individual item using this query:

query DetailView {
 book(id: $id) {
 id
 title
 abstract
 }
}

We know that the data is most likely already in the client cache, but because it's requested with a different query, Apollo Client doesn't know that. In order to tell Apollo Client where to look for the data, we can define custom resolvers:

import ApolloClient, { toIdValue } from 'apollo-client';

const client = new ApolloClient({
 networkInterface,
 customResolvers: {
 Query: {
 book: (_, args) => toIdValue(dataIdFromObject({ __typename: 'book', id: args['id'] })),
 },
 },
 dataIdFromObject,
 });

Apollo Client will use the return value of the custom resolver to look up the item in its cache. toIdValue must be used to indicate that the value returned should be interpreted as an id, and not as a scalar value or an object.

Using fetchMore

fetchMore can be used to manually update the result of one query based on the data returned by another query. Most often, it is used to handle pagination. In our GitHunt example, we have a paginated feed that displays a list of GitHub respositories. When we hit the "Load More" button, we don't want Apollo Client to throw away the repository information it has already loaded. Instead, it should just append the newly loaded repositories to the list that Apollo Client already has in the store. With this update, our UI component should re-render and show us all of the available repositories.

This is possible with fetchMore. The fetchMore method allows us to fetch another query and incorporate that query's result into the result of one existing query. We can see it in action within the GitHunt code:

const FeedQuery = gql`
 query Feed($type: FeedType!, $offset: Int, $limit: Int) {
 # ...
 }`;

const FeedWithData = graphql(FeedQuery, {
 props({ data: { loading, feed, currentUser, fetchMore } }) {
 return {
 loading,
 feed,
 currentUser,
 loadNextPage() {
 return fetchMore({
 variables: {
 offset: feed.length,
 },
 updateQuery: (prev, { fetchMoreResult }) => {
 if (!fetchMoreResult.data) { return prev; }
 return Object.assign({}, prev, {
 feed: [...prev.feed, ...fetchMoreResult.data.feed],
 });
 },
 });
 },
 };
 },
})(Feed);

We have two components here: FeedWithData and Feed. The FeedWithData implementation produces the props to be passed to the Feed component which serves as the presentation layer, i.e. it produces the UI. Specifically, we're mapping the loadNextPage prop to the following:

return fetchMore({
 variables: {
 offset: feed.length,
 },
 updateQuery: (prev, { fetchMoreResult }) => {
 if (!fetchMoreResult.data) { return prev; }
 return Object.assign({}, prev, {
 feed: [...prev.feed, ...fetchMoreResult.data.feed],
 });
 },
});

The fetchMore method takes a map of variables to be sent with the new query. Here, we're setting the offset to feed.length so that we fetch items that aren't already displayed on the feed. This variable map is merged with the one that's been specified for the query associated with the component. This means that other variables, e.g. the limit variable, will have the same value as they do within the component query.

It can also take a query named argument, which can be a GraphQL document containing a query that will be fetched in order to fetch more information; we refer to this as the fetchMore query. By default, the fetchMore query is the query associated with the component, i.e. the FEED_QUERY in this case.

When we call fetchMore, Apollo Client will fire the fetchMore query and it needs to know how to incorporate the result of the query into the information the component is asking for. This is accomplished through updateQuery. The named argument updateQuery should be a function that takes the previous result of the query associated with your component (i.e. FEED_QUERY in this case) and the information returned by the fetchMore query and combine the two.

Here, the fetchMore query is the same as the query associated with the component. Our updateQuery takes the new feed items returned and just appends them onto the feed items that we'd asked for previously. With this, the UI will update and the feed will contain the next page of items!

Although fetchMore is often used for pagination, there are many other cases in which it is applicable. For example, suppose you have a list of items (say, a collaborative todo list) and you have a way to fetch items that have been updated after a certain time. Then, you don't have to refetch the whole todo list to get updates: you can just incorporate the newly added items with fetchMore, as long as your updateQuery function correctly merges the new results.

Using updateQueries

Just as fetchMore allows you to update your UI according to the result of a query, updateQueries lets you update your UI based on the result of a mutation. To re-emphasize: most of the time, your UI will update automatically based on mutation results, as long as the object IDs in the result match up with the IDs you already have in your store. See the dataIdFromObject documentation above for more information about how to take advantage of this feature.

However, if you are removing or adding items to a list with a mutation or can't assign object identifiers to some of your objects, you'll have to use updateQueries to make sure that your UI reflects the change correctly.

We'll take the comments page within GitHunt as our example. When we submit a new comment, the "submit" button fires a mutation which adds a new comment to the "list" of the comments held on the server (in reality, the server doesn't know there's a list--it just knows that something is added to the comments table in SQL). The original query that fetched the comments for the list doesn't know about this new comment yet, so Apollo can't automatically add it to the list for us. So we'll use updateQueries to make sure that query result is updated, which will update Apollo's normalized store.

If you're familiar with Redux, think of the updateQueries option as a reducer, except instead of updating the store directly we're updating the query result shape, which means we don't have to worry about how the store internals work.

We expose this mutation through a function prop that the CommentsPage component can call. This is what the code looks like:

const SUBMIT_COMMENT_MUTATION = gql`
 mutation submitComment($repoFullName: String!, $commentContent: String!) {
 submitComment(repoFullName: $repoFullName, commentContent: $commentContent) {
 postedBy {
 login
 html_url
 }
 createdAt
 content
 }
 }
`
const CommentsPageWithMutations = graphql(SUBMIT_COMMENT_MUTATION, {
 props({ ownProps, mutate }) {
 return {
 submit({ repoFullName, commentContent }) {
 return mutate({
 variables: { repoFullName, commentContent },
 optimisticResponse: {
 __typename: 'Mutation',
 submitComment: {
 __typename: 'Comment',
 postedBy: ownProps.currentUser,
 createdAt: +new Date,
 content: commentContent,
 },
 },
 updateQueries: {
 Comment: (prev, { mutationResult }) => {
 const newComment = mutationResult.data.submitComment;
 return update(prev, {
 entry: {
 comments: {
 $unshift: [newComment],
 },
 },
 });
 },
 },
 });
 },
 };
 },
})(CommentsPage);

If we were to look carefully at the server schema, we'd see that the mutation actually returns information about the single new comment that was added; it doesn't refetch the whole list of comments. This makes a lot of sense: if we have a thousand comments on a page, we don't want to refetch all of them if we add a single new comment.

The comments page itself is rendered with the following query:

const COMMENT_QUERY = gql`
 query Comment($repoName: String!) {
 currentUser {
 login
 html_url
 }

 entry(repoFullName: $repoName) {
 id
 postedBy {
 login
 html_url
 }
 createdAt
 comments {
 postedBy {
 login
 html_url
 }
 createdAt
 content
 }
 repository {
 full_name
 html_url
 description
 open_issues_count
 stargazers_count
 }
 }
 }`;

Now, we have to incorporate the newly added comment returned by the mutation into the information that was already returned by the COMMENT_QUERY that was fired when the page was loaded. We accomplish this through updateQueries. Zooming in on that portion of the code:

mutate({
 //...
 updateQueries: {
 Comment: (prev, { mutationResult }) => {
 const newComment = mutationResult.data.submitComment;
 return update(prev, {
 entry: {
 comments: {
 $unshift: [newComment],
 },
 },
 });
 },
 },
})

Fundamentally, updateQueries is a map going from the name of a query (in our case, Comment) to a function that receives the previous result that this query received as well as the result returned by the mutation. In our case, the mutation returns information about the new comment. This function should then incorporate the mutation result into a new object containing the result previously received by the query (prev) and return that new object.

Note that the function must not alter the prev object (because prev is compared with the new object returned to see what changes the function made and hence what prop updates are needed).

In our updateQueries function for the Comment query, we're doing something really simple: just adding the comment we just submitted to the list of comments that the query asks for. We're doing that using the update function from the immutability-helper package, just to do it concisely. But, if you wanted to, you could write some no-helper Javascript to combine the two incoming objects into a new one for the result.

Once the mutation fires and the result arrives from the server (or, a result is provided through optimistic UI), our updateQueries function for the Comment query will be called and the Comment query will be updated accordingly. These changes in the result will be mapped to React props and our UI will update as well with the new information!

Using refetchQueries

refetchQueries offers an even simpler way of updating the cache than updateQueries. With refetchQueries you can specify one or more queries that you want to run after a mutation completed in order to refetch the parts of the store that may have been affected by the mutation:

mutate({
 //... insert comment mutation
 refetchQueries: [{
 query: gql`query updateCache {
 entry(repoFullName: $repoName) {
 id
 comments {
 postedBy {
 login
 html_url
 }
 createdAt
 content
 }
 }
 }`,
 variables: { repoFullName: 'apollostack/apollo-client' },
 }],
})

A very common way of using refetchQueries is to import queries defined for other components to make sure that those components will be updated:

import RepoCommentsQuery from '../queries/RepoCommentsQuery';

mutate({
 //... insert comment mutation
 refetchQueries: [{
 query: RepoCommentsQuery,
 variables: { repoFullName: 'apollostack/apollo-client' },
 }],
})

Using reducer

While updateQueries can only be used to update other queries based on the result of a mutation, the reducer option is a way that lets you update the query result based on any action, including results of other queries. It acts just like a Redux reducer on the non-normalized query result:

import update from 'immutability-helper';

const CommentsPageWithData = graphql(CommentsPageQuery, {
 props({ data }) {
 // ...
 },
 options({ params }) {
 return {
 reducer: (previousResult, action, variables) => {
 if (action.type === 'APOLLO_MUTATION_RESULT' && action.operationName === 'submitComment'){
 // NOTE: some more sanity checks are usually recommended here to make
 // sure the previousResult is not empty and that the mutation results
 // contains the data we expect.

 // NOTE: variables contains the current query variables,
 // not the variables of the query or mutation that caused the action.

 return update(previousResult, {
 entry: {
 comments: {
 $unshift: [action.result.data.submitComment],
 },
 },
 });
 } else if (action.type === 'MY_CUSTOM_REDUX_ACTION') {
 return update(previousResult, {
 currentUser: { $set: null },
 });
 }
 return previousResult;
 },
 };
 },
})(CommentsPage);

As you can see, the reducer option can be used to achieve the same goal as updateQueries, but it is more flexible and works with any type of action, not just mutations. For example, the query result can be updated based on another query's result, or even a simple redux action.

When should you use reducer vs. updateQueries vs. refetchQueries?

refetchQueries should be used whenever the mutation result alone is not enough to infer all the changes to the cache. refetchQueries is also a very good option if an extra roundtrip and possible overfetching are not of concern for your application, which is often true during prototyping. Compared with updateQueries and reducer, refetchQueries is the easiest to write and maintain.

reducer and updateQueries both provide similar functionality. While reducer is more flexible, updates based on mutations can usually be done equally well with updateQueries.

The main difference between the two is where the update behavior is declared. With reducer, the update behavior is co-located with the query itself. That means the query needs to know what actions should lead to an updated result. With updateQueries it is the mutation's responsibility to update all the queries that may need to know about the results of this mutation.

We recommend using the reducer option, except when there's a good reason to use updateQueries instead (eg. if it would make your app much easier to understand and maintain).

Auth

Unless all of the data you are loading is completely public, your app has some sort of users, accounts and permissions systems. If different users have different permissions in your application, then you need a way to tell the server which user is associated with each request.

Apollo Client comes with a pluggable HTTP network interface that includes several options for authentication.

Cookie

If your app is browser based and you are using cookies for login, it's very easy to tell your network interface to send the cookie along with every request. You just need to pass the { credentials: 'same-origin' } option:

const networkInterface = createNetworkInterface({
 uri: '/graphql',
 opts: {
 credentials: 'same-origin',
 },
});

const client = new ApolloClient({
 networkInterface,
});

This option is simply passed through to the fetch polyfill used by the network interface when sending the query.

Header

Another common way to identify yourself when using HTTP is to send along an authorization header. The Apollo network interface has a middleware feature that lets you modify requests before they are sent to the server. It's easy to add an authorization header to every HTTP request. In this example, we'll pull the login token from localStorage every time a request is sent:

import ApolloClient, { createNetworkInterface } from 'apollo-client';

const networkInterface = createNetworkInterface({
 uri: '/graphql',
});

networkInterface.use([{
 applyMiddleware(req, next) {
 if (!req.options.headers) {
 req.options.headers = {}; // Create the header object if needed.
 }

 // get the authentication token from local storage if it exists
 const token = localStorage.getItem('token');
 req.options.headers.authorization = token ? `Bearer ${token}` : null;
 next();
 }
}]);

const client = new ApolloClient({
 networkInterface,
});

The server can use that header to authenticate the user and attach it to the GraphQL execution context, so resolvers can modify their behavior based on a user's role and permissions.

Reset store on logout

Since Apollo caches all of your query results, it's important to get rid of them when the login state changes.

The easiest way to ensure that the UI and store state reflects the current user's permissions is to call client.resetStore() after your login or logout process has completed. This will cause the store to be cleared and all active queries to be refetched. Another option is to reload the page, which will have a similar effect.

class Profile extends React.Component {
 constructor(props) {
 super(props);

 this.logout = () => {
 App.logout() // or whatever else your logout flow is
 .then(() =>
 props.client.resetStore();
)
 .catch(err =>
 console.error('Logout failed', err);
);
 }
 }

 render() {
 const { loading, currentUser } = this.props;

 if (loading) {
 return (
 <p className="navbar-text navbar-right">
 Loading...
 </p>
);
 } else if (currentUser) {
 return (

 <p className="navbar-text navbar-right">
 {currentUser.login}

 <button onClick={this.logout}>Log out</button>
 </p>

);
 }
 return (
 <p className="navbar-text navbar-right">
 Log in with GitHub
 </p>
);
 }
}

Profile.propTypes = {
 client: React.PropTypes.instanceOf(ApolloClient),
 loading: React.PropTypes.bool,
 currentUser: React.PropTypes.shape({
 login: React.PropTypes.string.isRequired,
 }),
};

const PROFILE_QUERY = gql`
 query CurrentUserForLayout {
 currentUser {
 login
 avatar_url
 }
 }
`;

export default withApollo(graphql(PROFILE_QUERY, {
 options: { forceFetch: true },
 props: ({ data: { loading, currentUser } }) => ({
 loading, currentUser,
 }),
})(Profile));

Pagination

Often, you will have some views in your application where you need to display a list that contains too much data to be either fetched or displayed at once. Pagination is the most common solution to this problem, and Apollo Client has built-in functionality that makes it quite easy to do.

There are basically two ways of fetching paginated data: numbered pages, and cursors. There are also two ways for displaying paginated data: discrete pages, and infinite scrolling. For a more in-depth explanation of the difference and when you might want to use one vs. the other, we recommend that you read our blog post on the subject: Understanding Pagination.

In this article, we'll cover the technical details of using Apollo to implement both approaches.

Using fetchMore

In Apollo, the easiest way to do pagination is with a function called fetchMore, which is provided on the data prop by the graphql higher order component. This basically allows you to do a new GraphQL query and merge the result into the original result.

You can specify what query and variables to use for the new query, and how to merge the new query result with the existing data on the client. How exactly you do that will determine what kind of pagination you are implementing.

Offset-based

Offset-based pagination — also called numbered pages — is a very common pattern, found on many websites, because it is usually the easiest to implement on the backend. In SQL for example, numbered pages can easily be generated by using OFFSET and LIMIT.

Here is an example with numbered pages taken from GitHunt:

const FEED_QUERY = gql`
 query Feed($type: FeedType!, $offset: Int, $limit: Int) {
 currentUser {
 login
 }
 feed(type: $type, offset: $offset, limit: $limit) {
 id
 # ...
 }
 }
`;

const ITEMS_PER_PAGE = 10;
const FeedWithData = graphql(FEED_QUERY, {
 options(props) {
 return {
 variables: {
 type: (
 props.params &&
 props.params.type &&
 props.params.type.toUpperCase()
) || 'TOP',
 offset: 0,
 limit: ITEMS_PER_PAGE,
 },
 forceFetch: true,
 };
 },
 props({ data: { loading, feed, currentUser, fetchMore } }) {
 return {
 loading,
 feed,
 currentUser,
 loadMoreEntries() {
 return fetchMore({
 // query: ... (you can specify a different query. FEED_QUERY is used by default)
 variables: {
 // We are able to figure out which offset to use because it matches
 // the feed length, but we could also use state, or the previous
 // variables to calculate this (see the cursor example below)
 offset: feed.length,
 },
 updateQuery: (previousResult, { fetchMoreResult }) => {
 if (!fetchMoreResult.data) { return previousResult; }
 return Object.assign({}, previousResult, {
 // Append the new feed results to the old one
 feed: [...previousResult.feed, ...fetchMoreResult.data.feed],
 });
 },
 });
 },
 };
 },
})(Feed);

See this code in context in GitHunt.

As you can see, fetchMore is accessible through the data argument to the props function. So that our presentational component can remain unaware of Apollo, we use props to define a simple "load more" function, named loadMoreEntries, that can be called by the child component, Feed. This way we don't need to change the Feed component at all if we need to change our pagination logic.

In the example above, loadMoreEntries is a function which calls fetchMore with the length of the current feed as a variable. By default, fetchMore more will use the original query, so we just pass in new variables. Once the new data is returned from the server, the updateQuery function is used to merge it with the existing data, which will cause a re-render of your UI component with an expanded list.

Here is how the loadMoreEntries function from above is called from the UI component:

const Feed = ({ vote, loading, currentUser, feed, loadMoreEntries }) => {
 return (
 <div>
 <FeedContent
 entries={feed || []}
 currentUser={currentUser}
 onVote={vote}
 />
 Load more
 {loading ? <Loading /> : null}
 </div>
);
}

The above approach works great for limit/offset pagination. One downside of pagination with numbered pages or offsets is that an item can be skipped or returned twice when items are inserted into or removed from the list at the same time. That can be avoided with cursor-based pagination.

Cursor-based

In cursor-based pagination, a "cursor" is used to keep track of where in the data set the next items should be fetched from. Sometimes the cursor can be quite simple and just refer to the ID of the last object fetched, but in some cases — for example lists sorted according to some criteria — the cursor needs to encode the sorting criteria in addition to the ID of the last object fetched.

Implementing cursor-based pagination on the client isn't all that different from offset-based pagination, but instead of using an absolute offset, we keep a reference to the last object fetched and information about the sort order used.

In the example below, we use a fetchMore query to continuously load new comments, which will be prepended to the list. The cursor to be used in the fetchMore query is provided in the initial server response, and is updated whenever more data is fetched.

const MoreCommentsQuery = gql`
 query MoreComments($cursor: String) {
 moreComments(cursor: $cursor) {
 cursor
 comments {
 author
 text
 }
 }
 }
`;

const CommentsWithData = graphql(Comment, {
 // This function re-runs every time `data` changes, including after `updateQuery`,
 // meaning our loadMoreEntries function will always have the right cursor
 props({ data: { loading, cursor, comments, fetchMore } }) {
 return {
 loading,
 comments,
 loadMoreEntries: () => {
 return fetchMore({
 query: MoreCommentsQuery,
 variables: {
 cursor: cursor,
 },
 updateQuery: (previousResult, { fetchMoreResult }) => {
 const previousEntry = previousResult.entry;
 const newComments = fetchMoreResult.data.moreComments.comments;

 return {
 // By returning `cursor` here, we update the `loadMore` function
 // to the new cursor.
 cursor: fetchMoreResult.data.cursor,

 entry: {
 // Put the new comments in the front of the list
 comments: [...newComments, ...previousEntry.entry.comments],
 },
 };
 },
 });
 },
 };
 },
})(Feed);

Relay-style cursor pagination

Relay, another popular GraphQL client, is opinionated about the input and output of paginated queries, so people sometimes build their server's pagination model around Relay's needs. If you have a server that is designed to work with the Relay Cursor Connections spec, you can also call that server from Apollo Client with no problems.

Using Relay-style cursors is very similar to basic cursor-based pagination. The main difference is in the format of the query response which affects where you get the cursor.

Relay provides a pageInfo object on the returned cursor connection which contains the cursor of the first and last items returned as the properties startCursor and endCursor respectively. This object also contains a boolean property hasNextPage which can be used to determine if there are more results available.

The following example specifies a request of 10 items at a time and that results should start after the provided cursor. If null is passed for the cursor relay will ignore it and provide results starting from the beginning of the data set which allows the use of the same query for both initial and subsequent requests.

const CommentsQuery = gql`
 query Comments($cursor: String) {
 Comments(first: 10, after: $cursor) {
 comments {
 edges {
 node {
 author
 text
 }
 }
 pageInfo {
 endCursor
 hasNextPage
 }
 }
 }
 }
`;

const CommentsWithData = graphql(CommentsQuery, {
 // This function re-runs every time `data` changes, including after `updateQuery`,
 // meaning our loadMoreEntries function will always have the right cursor
 props({ data: { loading, comments, fetchMore } }) {
 return {
 loading,
 comments,
 loadMoreEntries: () => {
 return fetchMore({
 query: CommentsQuery,
 variables: {
 cursor: comments.pageInfo.endCursor,
 },
 updateQuery: (previousResult, { fetchMoreResult }) => {
 const newEdges = fetchMoreResult.data.comments.edges;
 const pageInfo = fetchMoreResult.data.comments.pageInfo;

 return {
 // Put the new comments at the end of the list and update `pageInfo`
 // so we have the new `endCursor` and `hasNextPage` values
 comments: {
 edges: [...previousResult.comments.edges, ...newEdges],
 pageInfo,
 },
 };
 },
 });
 },
 };
 },
})(Feed);

Optimistic UI

As explained in the mutations section, optimistic UI is a pattern that you can use to simulate the results of a mutation and update the UI even before receiving a response from the server. Once the response is received from the server, optimistic result is thrown away and replaced with the actual result.

Optimistic UI provides an easy way to make your UI respond much faster, while ensuring that the data becomes consistent with the actual response when it arrives.

Basic optimistic UI

Let's say we have an "edit comment" mutation, and we want the UI to update immediately when the user submits the mutation, instead of waiting for the server response. This is what the optimisticResponse parameter to the mutate function provides.

The main way to get GraphQL data into your UI components with Apollo is to use a query, so if we want our optimistic response to update the UI, we have to make sure to return an optimistic response that will update the correct query result. Learn more about how to do this with the dataIdFromObject option.

Here's what this looks like in the code:

const updateComment = gql`
 mutation updateComment($commentId: ID!, $commentContent: String!) {
 updateComment(commentId: $commentId, commentContent: $commentContent) {
 id
 __typename
 content
 }
 }
`;

const CommentPageWithData = graphql(submitComment, {
 props: ({ ownProps, mutate }) => ({
 submit({ commentId, commentContent }) {
 return mutate({
 variables: { commentId, commentContent },
 optimisticResponse: {
 __typename: 'Mutation',
 updateComment: {
 id: commentId,
 __typename: 'Comment',
 content: commentContent,
 },
 },
 });
 },
 }),
})(CommentPage);

We select id and __typename because that's what our dataIdFromObject uses to determine a globally unique object ID. We need to make sure to provide the right values for those fields, so that Apollo knows what object we are referring to.

Adding to a list

In the example above, we showed how to seamlessly edit an existing object in the store with an optimistic mutation result. However, many mutations don't just update an existing object in the store, but they insert a new one.

In that case we need to specify how to integrate the new data into existing queries, and thus our UI. You can read in detail about how to do that in the article about controlling the store--in particular, we can use the updateQueries function to insert a result into an existing query's result set. updateQueries works exactly the same way for optimistic results and the real results returned from the server, so just like above we only need to add the optimisticResponse option.

Here is a concrete example from GitHunt, which inserts a comment into an existing list of comments.

import React from 'react';
import { graphql } from 'react-apollo';
import gql from 'graphql-tag';
import update from 'immutability-helper';

const SUBMIT_COMMENT_MUTATION = gql`
 mutation submitComment($repoFullName: String!, $commentContent: String!) {
 submitComment(repoFullName: $repoFullName, commentContent: $commentContent) {
 postedBy {
 login
 html_url
 }
 createdAt
 content
 }
 }
`;

const CommentsPageWithMutations = graphql(SUBMIT_COMMENT_MUTATION, {
 props({ ownProps, mutate }) {
 return {
 submit({ repoFullName, commentContent }) {
 return mutate({
 variables: { repoFullName, commentContent },
 optimisticResponse: {
 __typename: 'Mutation',
 submitComment: {
 __typename: 'Comment',
 postedBy: ownProps.currentUser,
 createdAt: +new Date,
 content: commentContent,
 },
 },
 updateQueries: {
 // Would update the query that looks like:
 // query CommentQuery { ... }
 CommentQuery: (previousResult, { mutationResult }) => {
 const newComment = mutationResult.data.submitComment;
 return update(previousResult, {
 entry: {
 comments: {
 $unshift: [newComment],
 },
 },
 });
 },
 },
 });
 },
 };
 },
})(CommentsPage);

Fragments

A GraphQL fragment is a shared piece of query logic.

fragment NameParts on Person {
 firstName
 lastName
}

query getPerson {
 people(id: "7") {
 ...NameParts
 avatar(size: LARGE)
 }
}

There are two principal uses for fragments in Apollo:

	Sharing fields between multiple queries, mutations or subscriptions.

	Breaking your queries up to allow you to co-locate field access with the places they are used.

In this document we'll outline patterns to do both; we'll also make use of utilities in the graphql-anywhere and graphql-tag packages which aim to help us, especially with the second problem.

Reusing Fragments

The most straightforward use of fragments is to reuse parts of queries (or mutations or subscriptions) in various parts of your application. For instance, in GitHunt on the comments page, we want to fetch the same fields after posting a comment as we originally query. This way we can be sure that we render consistent comment objects as the data changes.

To do so, we can simply share a fragment describing the fields we need for a comment:

import gql from 'graphql-tag';

CommentsPage.fragments = {
 comment: gql`
 fragment CommentsPageComment on Comment {
 id
 postedBy {
 login
 html_url
 }
 createdAt
 content
 }
 `,
};

We put the fragment on CommentsPage.fragments.comment by convention, and use the familiar gql helper to create it.

When it's time to embed the fragment in a query, we simply use the ...Name syntax in our GraphQL, and embed the fragment inside our query GraphQL document:

const SUBMIT_COMMENT_MUTATION = gql`
 mutation submitComment($repoFullName: String!, $commentContent: String!) {
 submitComment(repoFullName: $repoFullName, commentContent: $commentContent) {
 ...CommentsPageComment
 }
 }
 ${CommentsPage.fragments.comment}
`;

export const COMMENT_QUERY = gql`
 query Comment($repoName: String!) {
 # ...
 entry(repoFullName: $repoName) {
 # ...
 comments {
 ...CommentsPageComment
 }
 # ...
 }
 }
 ${CommentsPage.fragments.comment}
`;

NOTE: you may get a warning about fragments already existing, this will be fixed in a release of Apollo Client soon.

You can see the full source code to the CommentsPage in GitHunt here.

Colocating Fragments

A key advantage of GraphQL is the tree-like nature of the response data, which in many cases mirrors your rendered component hierarchy. This, combined with GraphQL's support for fragments, allows you to split your queries up in such a way that the various fields fetched by the queries are located right alongside the code that uses the field.

Although this technique doesn't always make sense (for instance it's not always the case that the GraphQL schema is driven by the UI requirements), when it does, it's possible to use some patterns in Apollo client to take full advantage of it.

In GitHunt, we show an example of this on the FeedPage, which constructs the follow view hierarchy:

FeedPage
└── Feed
 └── FeedEntry
 ├── RepoInfo
 └── VoteButtons

The FeedPage conducts a query to fetch a list of Entrys, and each of the subcomponents requires different subfields of each Entry.

The graphql-anywhere package gives us tools to easily construct a single query that provides all the fields that each subcomponent needs, and allows to easily pass the exact field that a component needs to it.

Creating Fragments

To create the fragments, we again use the gql helper and attach to subfields of ComponentClass.fragment, for example:

VoteButtons.fragments = {
 entry: gql`
 fragment VoteButtons on Entry {
 score
 vote {
 vote_value
 }
 }
 `,
};

One nice tool that the graphql-anywhere package gives us is a PropType checker that we can use to ensure that we do indeed receive those fields in the component's entry prop:

import { propType } from 'graphql-anywhere';

VoteButtons.propTypes = {
 // ...
 entry: propType(VoteButtons.fragments.entry).isRequired,
};

If our fragments include sub-fragments then we can pass them into the gql helper:

FeedEntry.fragments = {
 entry: gql`
 fragment FeedEntry on Entry {
 commentCount
 repository {
 full_name
 html_url
 owner {
 avatar_url
 }
 }
 ...VoteButtons
 ...RepoInfo
 }
 ${VoteButtons.fragments.entry}
 ${RepoInfo.fragments.entry}
 `,
};

Filtering With Fragments

We can also use the graphql-anywhere package to filter the exact fields from the entry before passing them to the subcomponent. So when we render a VoteButtons, we can simply do:

import { filter } from 'graphql-anywhere';

<VoteButtons
 entry={filter(VoteButtons.fragments.entry, entry)}
 canVote={loggedIn}
 onVote={type => onVote({
 repoFullName: full_name,
 type,
 })}
/>

The filter() function will grab exactly the fields from the entry that the fragment defines.

Prefetching

Prefetching is one of the easiest ways to make your application's UI feel a lot faster with Apollo Client. Prefetching simply means loading data into the cache before it needs to be rendered on the screen. Essentially, we want to load all data required for a view as soon as we can guess that a user will navigate to it.

In Apollo Client, prefetching is very simple and can be done by running a component's query before it is rendered. As a simple example, in GitHunt, we use the withApollo higher-order component to directly call a query as soon as the user hovers over a link to the comments page. With the data prefetched, the comments page renders immediately, and the user often experiences no delay at all:

const FeedEntry = ({ entry, currentUser, onVote, client }) => {
 const repoLink = `/${entry.repository.full_name}`;
 const prefetchComments = (repoFullName) => () => {
 client.query({
 query: COMMENT_QUERY,
 variables: { repoName: repoFullName },
 });
 };

 return (
 <div className="media">
 ...
 <div className="media-body">
 <RepoInfo
 description={entry.repository.description}
 stargazers_count={entry.repository.stargazers_count}
 open_issues_count={entry.repository.open_issues_count}
 created_at={entry.createdAt}
 user_url={entry.postedBy.html_url}
 username={entry.postedBy.login}
 >
 <Link to={repoLink} onMouseOver={prefetchComments(entry.repository.full_name)}>
 View comments ({entry.commentCount})
 </Link>
 </RepoInfo>
 </div>
 </div>
);
};

const FeedEntryWithApollo = withApollo(FeedEntry);

There are a lot of different ways to anticipate that the user will end up needing some data in the UI. In addition to using the hover state, here are some other places you can preload data:

	The next step of a multi-step wizard immediately

	The route of a call-to-action button

	All of the data for a sub-area of the application, to make navigating within that area instant

If you have some other ideas, please send a PR to this article, and maybe add some more code snippets. A special form of prefetching is store hydration from the server, so you might also consider hydrating more data than is actually needed for the first page load to make other interactions faster.

React Native

You can use Apollo with React Native exactly as you would with React Web.

To introduce Apollo to your app, install react-apollo and apollo-client from npm and use them in your app as outlined in the setup article:

npm install apollo-client react-apollo graphql-tag --save

import React from 'react';
import { AppRegistry } from 'react-native';
import ApolloClient from 'apollo-client';
import { ApolloProvider } from 'react-apollo';

// Create the client as outlined above
const client = new ApolloClient();

const App = () => (
 <ApolloProvider client={client}>
 <MyRootComponent />
 </ApolloProvider>
);

AppRegistry.registerComponent('MyApplication', () => App);

If you are new to using Apollo with React, you should probably read the React guide.

Examples

There are some Apollo examples written in React Native that you may wish to refer to:

	The "Hello World" example used at dev.apolldata.com.

	A GitHub API Example built to work with GitHub's new GraphQL API.

If you've got an example to post here, please hit the "Edit on GitHub" button above and let us know!

Redux

By default, Apollo Client creates its own internal Redux store to manage queries and their results. If you are already using Redux for the rest of your app, you can have the client integrate with your existing store instead.

Note: While this will enable Apollo Client to keep its data in the same store, you should still use the graphql container to attach the data to your UI. If you want to use your Redux and Apollo state in a component, you need to use both graphql from react-apollo and connect from react-redux.

This will let you better track the different events that happen in your app, and how your client and server side data changes interleave. It will also make using tools like the Redux Dev Tools more natural.

Creating a store

If you want to use your own store, you'll need to pass in reducer and middleware from your Apollo Client instance; you can then pass the store into your ApolloProvider directly:

import { createStore, combineReducers, applyMiddleware, compose } from 'redux';
import ApolloClient from 'apollo-client';
import { ApolloProvider } from 'react-apollo';

import { todoReducer, userReducer } from './reducers';

const client = new ApolloClient();

const store = createStore(
 combineReducers({
 todos: todoReducer,
 users: userReducer,
 apollo: client.reducer(),
 }),
 {}, // initial state
 compose(
 applyMiddleware(client.middleware()),
 // If you are using the devToolsExtension, you can add it here also
 window.__REDUX_DEVTOOLS_EXTENSION__ && window.__REDUX_DEVTOOLS_EXTENSION__(),
)
);

ReactDOM.render(
 <ApolloProvider store={store} client={client}>
 <MyRootComponent />
 </ApolloProvider>,
 rootEl
)

If you'd like to use a different root key for the client reducer (rather than apollo), use the reduxRootKey: "key" option when creating the client:

const client = new ApolloClient({
 reduxRootKey: 'differentKey',
});

const store = createStore(
 combineReducers({
 differentKey: client.reducer(),
 })
);

Using connect

You can continue to use react-redux's connect higher order component to wire state into and out of your components. You can connect before or after (or both!) attaching GraphQL data to your component with graphql:

import React, { Component } from 'react';
import { graphql } from 'react-apollo';
import { connect } from 'react-redux';

import { CLONE_LIST } from './mutations';
import { viewList } from './actions';

const List = ({ listId, cloneList }) => (
 <div>List ID: {listId} <button onClick={cloneList}>Clone</button></div>
);

const withCloneList = graphql(CLONE_LIST, {
 props: ({ ownProps, mutate }) => ({
 cloneList() {
 return mutate()
 .then(result => {
 ownProps.onSelectList(result.id);
 });
 },
 }),
});
const ListWithData = withCloneList(List);

const ListWithDataAndState = connect(
 (state) => ({ listId: state.list.id }),
 (dispatch) => ({
 onSelectList(id) {
 dispatch(viewList(id));
 }
 }),
)(ListWithData);

This means you can easily pass variables into your queries that come from Redux state, or dispatch actions that rely on server-side data.

Webpack

You can load GraphQL queries over .graphql files using Webpack. The package graphql-tag comes with a loader easy to setup and with some benefits:

	Do not process GraphQL ASTs on client-side

	Enable queries to be separated from logic

In the example below, we create a new file called currentUser.graphql:

query CurrentUserForLayout {
 currentUser {
 login
 avatar_url
 }
}

You can load this file adding a rule in your webpack config file:

loaders: [
 {
 test: /\.(graphql|gql)$/,
 exclude: /node_modules/,
 loader: 'graphql-tag/loader'
 }
]

As you can see, .graphql or .gql files will be parsed whenever imported:

import React, { Component } from 'react';
import { graphql } from 'react-apollo';
import currentUserQuery from './currentUser.graphql';

class Profile extends Component { ... }
Profile.propTypes = { ... };

export default graphql(currentUserQuery)(Profile)

Jest

Jest can't use the Webpack loaders. To make the same transformation work in Jest, use jest-transform-graphql.

Fragments

You can use and include fragments in .graphql files and have webpack include those dependencies for you, similar to how you would use fragments and queries with the gql tag in plain JS.

#import "./UserInfoFragment.graphql"

query CurrentUserForLayout {
 currentUser {
 ...UserInfo
 }
}

See how we import the UserInfo fragment from another .graphql file (same way you'd import modules in JS).

And here's an example of defining the fragment in another .graphql file.

fragment UserInfo on User {
 login
 avatar_url
}

Server Side Rendering

Apollo provides two techniques to allow your applications to load quickly, avoiding unnecessary delays to users:

	Store rehydration, which allows your initial set of queries to return data immediately without a server roundtrip.

	Server side rendering, which renders the initial HTML view on the server before sending it to the client.

You can use one or both of these techniques to provide a better user experience.

Store rehydration

For applications that can perform some queries on the server prior to rendering the UI on the client, Apollo allows for setting the initial state of data. This is sometimes called rehydration, since the data is "dehydrated" when it is serialized and included in the initial HTML payload.

For example, a typical approach is to include a script tag that looks something like:

<script>
 // `initialState` should have the shape of the Apollo store
 // state. Make sure to include only the data though. E.g.:
 // const initialState = {[client.reduxRootKey]: {
 // data: client.store.getState()[client.reduxRootKey].data
 // }};
 window.__APOLLO_STATE__ = initialState;
</script>

You can then rehydrate the client using the initial state passed from the server:

const client = new ApolloClient({
 initialState: window.__APOLLO_STATE__,
});

We'll see below how you can generate both the HTML and the Apollo store's state using Node and react-apollo's server rendering functions. However if you are rendering HTML via some other means, you will have to generate the state manually.

If you are using Redux externally to Apollo, and already have store rehydration, you should pass the store state into the Store constructor.

Then, when the client runs the first set of queries, the data will be returned instantly because it is already in the store!

If you are using forceFetch on some of the initial queries, you can pass the ssrForceFetchDelay option to skip force fetching during initialization, so that even those queries run using the cache:

const client = new ApolloClient({
 initialState: window.__APOLLO_STATE__,
 ssrForceFetchDelay: 100,
});

Server-side rendering

You can render your entire React-based Apollo application on a Node server using rendering functions built into react-apollo. These functions take care of the job of fetching all queries that are required to rendering your component tree. Typically you would use these functions from within a HTTP server such as Express.

No changes are required to client queries to support this, so your Apollo-based React UI should support SSR out of the box.

Server initialization

In order to render your application on the server, you need to handle a HTTP request (using a server like Express, and a server-capable Router like React-Router), and then render your application to a string to pass back on the response.

We'll see how to take your component tree and turn it into a string in the next section, but you'll need to be a little careful in how you construct your Apollo Client instance on the server to ensure everything works there as well:

	When creating an Apollo Client instance on the server, you'll need to set up you network interface to connect to the API server correctly. This might look different to how you do it on the client, since you'll probably have to use an absolute URL to the server if you were using a relative URL on the client.

	Since you only want to fetch each query result once, pass the ssrMode: true option to the Apollo Client constructor to avoid repeated force-fetching.

	You need to ensure that you create a new client or store instance for each request, rather than re-using the same client for multiple requests. Otherwise the UI will be getting stale data and you'll have problems with authentication.

Once you put that all together, you'll end up with initialization code that looks like this:

import ApolloClient, { createNetworkInterface } from 'apollo-client';
import { ApolloProvider } from 'react-apollo';
import Express from 'express';
import { match, RouterContext } from 'react-router';

// A Routes file is a good shared entry-point between client and server
import routes from './routes';

// Note you don't have to use any particular http server, but
// we're using Express in this example
const app = new Express();
app.use((req, res) => {

 // This example uses React Router, although it should work equally well with other
 // routers that support SSR
 match({ routes, location: req.originalUrl }, (error, redirectLocation, renderProps) => {

 const client = new ApolloClient({
 ssrMode: true,
 // Remember that this is the interface the SSR server will use to connect to the
 // API server, so we need to ensure it isn't firewalled, etc
 networkInterface: createNetworkInterface({
 uri: 'http://localhost:3010',
 opts: {
 credentials: 'same-origin',
 // transfer request headers to networkInterface so that they're accessible to proxy server
 // Addresses this issue: https://github.com/matthew-andrews/isomorphic-fetch/issues/83
 headers: req.headers,
 },
 }),
 });

 const app = (
 <ApolloProvider client={client}>
 <RouterContext {...renderProps} />
 </ApolloProvider>
);

 // rendering code (see below)
 });
});

app.listen(basePort, () => console.log(// eslint-disable-line no-console
 `App Server is now running on http://localhost:${basePort}`
));

You can check out the GitHunt app's ui/server.js for a complete working example.

Next we'll see what that rendering code actually does.

Using getDataFromTree

The getDataFromTree function takes your React tree, determines which queries are needed to render them, and then fetches them all. It does this recursively down the whole tree if you have nested queries. It returns a promise which resolves when the data is ready in your Apollo Client store.

At the point that the promise resolves, your Apollo Client store will be completely initialized, which should mean your app will now render instantly (since all queries are prefetched) and you can return the stringified results in the response:

import { getDataFromTree } from "react-apollo"

const client = new ApolloClient(....);

// during request (see above)
getDataFromTree(app).then(() => {
 // We are ready to render for real
 const content = ReactDOM.renderToString(app);
 const initialState = {[client.reduxRootKey]: client.getInitialState() };

 const html = <Html content={content} state={initialState} />;

 res.status(200);
 res.send(`<!doctype html>\n${ReactDOM.renderToStaticMarkup(html)}`);
 res.end();
});

Your markup in this case can look something like:

function Html({ content, state }) {
 return (
 <html>
 <body>
 <div id="content" dangerouslySetInnerHTML={{ __html: content }} />
 <script dangerouslySetInnerHTML={{
 __html: `window.__APOLLO_STATE__=${JSON.stringify(state)};`,
 }} />
 </body>
 </html>
);
}

Avoiding the network for local queries

If your GraphQL endpoint is on the same server that you're rendering from, you may want to avoid using the network when making your SSR queries. In particular, if localhost is firewalled on your production environment (eg. Heroku), making network requests for these queries will not work. One solution to this problem is the apollo-local-query module, which lets you create a networkInterface for apollo that doesn't actually use the network.

Skipping queries for SSR

If you want to intentionally skip a query during SSR, you can pass ssr: false in the query options. Typically, this will mean the component will get rendered in it's loading state on the server. For example:

const withClientOnlyUser = graphql(GET_USER_WITH_ID, {
 options: { ssr: false }, // won't be called during SSR
});

Using renderToStringWithData

The renderToStringWithData function simplifies the above and simply returns the content string that you need to render. So it reduces the number of steps slightly:

// server application code (integrated usage)
import { renderToStringWithData } from "react-apollo"

const client = new ApolloClient(....);

// during request
renderToStringWithData(app).then((content) => {
 const initialState = {[client.reduxRootKey]: client.getInitialState() };
 const html = <Html content={content} state={initialState} />;

 res.status(200);
 res.send(`<!doctype html>\n${ReactDOM.renderToStaticMarkup(html)}`);
 res.end();
});

media/cover.jpg

