

 	
 - Table of Content -

 	
 angular2 documentation

 	
 1. Introduction

 	
 2. The Hero Editor

 	
 3. Master/Detail

 	
 4. Multiple Components

 	
 5. Services

 	
 6. Routing

 	
 7. HTTP

 	
 1. Overview

 	
 2. Architecture

 	
 3. Displaying Data

 	
 4. User Input

 	
 5. Forms

 	
 6. Dependency Injection

 	
 7. Template Syntax

 	
 8. Angular Cheat Sheet

 	
 9. Style Guide

 	
 10. Glossary

 	
 Angular Modules (NgModule)

 	
 Animations

 	
 Attribute Directives

 	
 Component Styles

 	
 Hierarchical Injectors

 	
 HTTP Client

 	
 Lifecycle Hooks

 	
 Npm Packages

 	
 Pipes

 	
 Routing & Navigation

 	
 Security

 	
 Structural Directives

 	
 Testing

 	
 TypeScript Configuration

 	
 Upgrading from 1.x

 	
 Webpack: an introduction

 	
 Overview

 	
 Angular 1 to 2 Quick Ref

 	
 Angular Module FAQs

 	
 Component Interaction

 	
 Component-relative Paths

 	
 Dependency Injection

 	
 Dynamic Forms

 	
 Form Validation

 	
 RC4 to RC5 Migration

 	
 Set the Document Title

 	
 TypeScript to JavaScript

 	
 Visual Studio 2015 QuickStart

angular2 documentation

 About this book.

 Documentation generated by docs2epub [http://javier.xyz/docs2epub/] on Fri Sep 02 2016 02:18:40 GMT-0500 (CDT), scrapped from https://angular.io/docs/ts/latest/.

 Find more about this project on https://github.com/angular/angular.
 LICENCE of angular2: https://raw.githubusercontent.com/angular/angular/master/LICENSE

 1. Introduction

Our grand plan is to build an app to help a staffing agency manage its stable of heroes.
Even heroes need to find work.

Of course we'll only make a little progress in this tutorial. What we do build will
have many of the features we expect to find in a full-blown, data-driven application: acquiring and displaying
a list of heroes, editing a selected hero's detail, and navigating among different
views of heroic data.

The Tour of Heroes covers the core fundamentals of Angular.
We’ll use built-in directives to show/hide elements and display lists of hero data.
We’ll create a component to display hero details and another to show an array of heroes.
We'll use one-way data binding for read-only data. We'll add editable fields to update a model
with two-way data binding. We'll bind component methods to user events like key strokes and clicks.
We’ll learn to select a hero from a master list and edit that hero in the details view. We'll
format data with pipes. We'll create a shared service to assemble our heroes. And we'll use routing to navigate among different views and their components.

We’ll learn enough core Angular to get started and gain confidence that
Angular can do whatever we need it to do.
We'll be covering a lot of ground at an introductory level but we’ll find plenty of links
to chapters with greater depth.

Run the .

The End Game

Here's a visual idea of where we're going in this tour, beginning with the "Dashboard"
view and our most heroic heroes:

[image: Output of heroes dashboard]Above the dashboard are two links ("Dashboard" and "Heroes").
We could click them to navigate between this Dashboard and a Heroes view.

Instead we click the dashboard hero named "Magneta" and the router takes us to a "Hero Details" view
of that hero where we can change the hero's name.

[image: Details of hero in app]Clicking the "Back" button would return us to the "Dashboard".
Links at the top can take us to either of the main views.
We'll click "Heroes". The app takes to the "Heroes" master list view.

[image: Output of heroes list app]We click a different hero and the readonly mini-detail beneath the list reflects our new choice.

We click the "View Details" button to drill into the
editable details of our selected hero.

The following diagram captures all of our navigation options.

[image: View navigations]Here's our app in action

[image: Tour of Heroes in Action]Up Next

We’ll build this Tour of Heroes together, step by step.
We'll motivate each step with a requirement that we've
met in countless applications. Everything has a reason.

And we’ll meet many of the core fundamentals of Angular along the way.

Let's get started!

2. The Hero Editor

Every story starts somewhere. Our story starts where the QuickStart ends.

Run the for this part.

Create a folder called angular2-tour-of-heroes and follow the QuickStart steps
which provide the prerequisites, the folder structure, and the core files for our Tour of Heroes.

We should have the following structure:

angular2-tour-of-heroes
app
app.component.ts
app.module.ts
main.ts

node_modules ...
typings ...
index.html
package.json
styles.css
systemjs.config.js
tsconfig.json
typings.json

Keep the app transpiling and running

We want to start the TypeScript compiler, have it watch for changes, and start our server. We'll do this by typing

npm start
This command runs the compiler in watch mode, starts the server, launches the app in a browser,
and keeps the app running while we continue to build the Tour of Heroes.

Show our Hero

We want to display Hero data in our app

Let's add two properties to our AppComponent, a title property for the application name and a hero property
for a hero named "Windstorm".

app.component.ts (AppComponent class)
export class AppComponent {
 title = 'Tour of Heroes';
 hero = 'Windstorm';
}
Now we update the template in the @Component decoration with data bindings to these new properties.

template: '<h1>{{title}}</h1><h2>{{hero}} details!</h2>'
The browser should refresh and display our title and hero.

The double curly braces tell our app to read the title and hero properties from the component and render them.
This is the "interpolation" form of one-way data binding.

Hero object

At the moment, our hero is just a name. Our hero needs more properties.
Let's convert the hero from a literal string to a class.

Create a Hero class with id and name properties.
For now put this near the top of the app.component.ts file, just below the import statement.

app.component.ts (Hero class)
export class Hero {
 id: number;
 name: string;
}
Now that we have a Hero class, let’s refactor our component’s hero property to be of type Hero.
Then initialize it with an id of 1 and the name, "Windstorm".

app.component.ts (hero property)
hero: Hero = {
 id: 1,
 name: 'Windstorm'
};
Because we changed the hero from a string to an object,
we update the binding in the template to refer to the hero’s name property.

template: '<h1>{{title}}</h1><h2>{{hero.name}} details!</h2>'
The browser refreshes and continues to display our hero’s name.

Adding more HTML

Displaying a name is good, but we want to see all of our hero’s properties.
We’ll add a <div> for our hero’s id property and another <div> for our hero’s name.

template: '<h1>{{title}}</h1><h2>{{hero.name}} details!</h2><div><label>id: </label>{{hero.id}}</div><div><label>name: </label>{{hero.name}}</div>'
Uh oh, our template string is getting long. We better take care of that to avoid the risk of making a typo in the template.

Multi-line template strings

We could make a more readable template with string concatenation
but that gets ugly fast, it is harder to read, and
it is easy to make a spelling error. Instead,
let’s take advantage of the template strings feature
in ES2015 and TypeScript to maintain our sanity.

Change the quotes around the template to back-ticks and
put the <h1>, <h2> and <div> elements on their own lines.

app.component.ts (AppComponent's template)
template:`
 <h1>{{title}}</h1>
 <h2>{{hero.name}} details!</h2>
 <div><label>id: </label>{{hero.id}}</div>
 <div><label>name: </label>{{hero.name}}</div>
 `
Editing Our Hero

We want to be able to edit the hero name in a textbox.

Refactor the hero name <label> with <label> and <input> elements as shown below:

app.component.ts (input element)
template:`
 <h1>{{title}}</h1>
 <h2>{{hero.name}} details!</h2>
 <div><label>id: </label>{{hero.id}}</div>
 <div>
 <label>name: </label>
 <input value="{{hero.name}}" placeholder="name">
 </div>
 `
We see in the browser that the hero’s name does appear in the <input> textbox.
But something doesn’t feel right.
When we change the name, we notice that our change
is not reflected in the <h2>. We won't get the desired behavior
with a one-way binding to <input>.

Two-Way Binding

We intend to display the name of the hero in the <input>, change it,
and see those changes wherever we bind to the hero’s name.
In short, we want two-way data binding.

Before we can use two-way data binding for form inputs, we need to import the FormsModule
package in our Angular module. We add it to the NgModule decorator's imports array. This array contains the list
of external modules used by our application.
Now we have included the forms package which includes ngModel.

app.module.ts (FormsModule import)
import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';
import { FormsModule } from '@angular/forms';

import { AppComponent } from './app.component';

@NgModule({
 imports: [
 BrowserModule,
 FormsModule
],
 declarations: [
 AppComponent
],
 bootstrap: [AppComponent]
})
export class AppModule { }
Let’s update the template to use the ngModel built-in directive for two-way binding.

Replace the <input> with the following HTML

<input [(ngModel)]="hero.name" placeholder="name">
The browser refreshes. We see our hero again. We can edit the hero’s name and
see the changes reflected immediately in the <h2>.

The Road We’ve Travelled

Let’s take stock of what we’ve built.

	Our Tour of Heroes uses the double curly braces of interpolation (a kind of one-way data binding)
to display the application title and properties of a Hero object.

	We wrote a multi-line template using ES2015’s template strings to make our template readable.

	We can both display and change the hero’s name after adding a two-way data binding to the <input> element
using the built-in ngModel directive.

	The ngModel directive also propagates changes to every other binding of the hero.name.

Run the for this part.

Here's the complete app.component.ts as it stands now:

app.component.ts
import { Component } from '@angular/core';

export class Hero {
 id: number;
 name: string;
}

@Component({
 selector: 'my-app',
 template: `
 <h1>{{title}}</h1>
 <h2>{{hero.name}} details!</h2>
 <div><label>id: </label>{{hero.id}}</div>
 <div>
 <label>name: </label>
 <input [(ngModel)]="hero.name" placeholder="name">
 </div>
 `
})
export class AppComponent {
 title = 'Tour of Heroes';
 hero: Hero = {
 id: 1,
 name: 'Windstorm'
 };
}
The Road Ahead

Our Tour of Heroes only displays one hero and we really want to display a list of heroes.
We also want to allow the user to select a hero and display their details.
We’ll learn more about how to retrieve lists, bind them to the
template, and allow a user to select a hero in the
next tutorial chapter.

3. Master/Detail

Our story needs more heroes.
We’ll expand our Tour of Heroes app to display a list of heroes,
allow the user to select a hero, and display the hero’s details.

Run the for this part.

Let’s take stock of what we’ll need to display a list of heroes.
First, we need a list of heroes. We want to display those heroes in the view’s template,
so we’ll need a way to do that.

Where We Left Off

Before we continue with Part 2 of the Tour of Heroes,
let’s verify we have the following structure after Part 1.
If not, we’ll need to go back to Part 1 and figure out what we missed.

angular2-tour-of-heroes
app
app.component.ts
app.module.ts
main.ts

node_modules ...
typings ...
index.html
package.json
styles.css
systemjs.config.js
tsconfig.json
typings.json

Keep the app transpiling and running

We want to start the TypeScript compiler, have it watch for changes, and start our server. We'll do this by typing

npm start
This will keep the application running while we continue to build the Tour of Heroes.

Displaying Our Heroes

Creating heroes

Let’s create an array of ten heroes.

app.component.ts (hero array)
const HEROES: Hero[] = [
 { id: 11, name: 'Mr. Nice' },
 { id: 12, name: 'Narco' },
 { id: 13, name: 'Bombasto' },
 { id: 14, name: 'Celeritas' },
 { id: 15, name: 'Magneta' },
 { id: 16, name: 'RubberMan' },
 { id: 17, name: 'Dynama' },
 { id: 18, name: 'Dr IQ' },
 { id: 19, name: 'Magma' },
 { id: 20, name: 'Tornado' }
];
The HEROES array is of type Hero, the class defined in part one,
to create an array of heroes.
We aspire to fetch this list of heroes from a web service, but let’s take small steps
first and display mock heroes.

Exposing heroes

Let’s create a public property in AppComponent that exposes the heroes for binding.

app.component.ts (hero array property)
heroes = HEROES;
We did not have to define the heroes type. TypeScript can infer it from the HEROES array.

We could have defined the heroes list here in this component class.
But we know that ultimately we’ll get the heroes from a data service.
Because we know where we are heading, it makes sense to separate the hero data
from the class implementation from the start.

Displaying heroes in a template

Our component has heroes. Let’s create an unordered list in our template to display them.
We’ll insert the following chunk of HTML below the title and above the hero details.

app.component.ts (heroes template)
<h2>My Heroes</h2>
<ul class="heroes">

 <!-- each hero goes here -->

Now we have a template that we can fill with our heroes.

Listing heroes with ngFor

We want to bind the array of heroes in our component to our template, iterate over them,
and display them individually.
We’ll need some help from Angular to do this. Let’s do this step by step.

First modify the tag by adding the built-in directive *ngFor.

app.component.ts (ngFor)
<li *ngFor="let hero of heroes">
The leading asterisk (*) in front of ngFor is a critical part of this syntax.

The (*) prefix to ngFor indicates that the element and its children
constitute a master template.

The ngFor directive iterates over the heroes array returned by the AppComponent.heroes property
and stamps out instances of this template.

The quoted text assigned to ngFor means
“take each hero in the heroes array, store it in the local hero variable,
and make it available to the corresponding template instance”.

The let keyword before "hero" identifies hero as a template input variable.
We can reference this variable within the template to access a hero’s properties.

Learn more about ngFor and template input variables in the
Displaying Data and
Template Syntax chapters.

Now we insert some content between the tags
that uses the hero template variable to display the hero’s properties.

app.component.ts (ngFor template)
<li *ngFor="let hero of heroes">
 {{hero.id}} {{hero.name}}

When the browser refreshes, we see a list of heroes!

Styling our heroes

Our list of heroes looks pretty bland.
We want to make it visually obvious to a user which hero we are hovering over and which hero is selected.

Let’s add some styles to our component by setting the styles property on the @Component decorator
to the following CSS classes:

app.component.ts (styles)
styles: [`
 .selected {
 background-color: #CFD8DC !important;
 color: white;
 }
 .heroes {
 margin: 0 0 2em 0;
 list-style-type: none;
 padding: 0;
 width: 15em;
 }
 .heroes li {
 cursor: pointer;
 position: relative;
 left: 0;
 background-color: #EEE;
 margin: .5em;
 padding: .3em 0;
 height: 1.6em;
 border-radius: 4px;
 }
 .heroes li.selected:hover {
 background-color: #BBD8DC !important;
 color: white;
 }
 .heroes li:hover {
 color: #607D8B;
 background-color: #DDD;
 left: .1em;
 }
 .heroes .text {
 position: relative;
 top: -3px;
 }
 .heroes .badge {
 display: inline-block;
 font-size: small;
 color: white;
 padding: 0.8em 0.7em 0 0.7em;
 background-color: #607D8B;
 line-height: 1em;
 position: relative;
 left: -1px;
 top: -4px;
 height: 1.8em;
 margin-right: .8em;
 border-radius: 4px 0 0 4px;
 }
`]
Notice that we again use the back-tick notation for multi-line strings.

That's a lot of styles! We can put them inline as shown here, or we can move them out to their own file which will make it easier to code our component.
We'll do this in a later chapter. For now let's keep rolling.

When we assign styles to a component they are scoped to that specific component.
Our styles will only apply to our AppComponent and won't "leak" to the outer HTML.

Our template for displaying the heroes should now look like this:

app.component.ts (styled heroes)
<h2>My Heroes</h2>
<ul class="heroes">
 <li *ngFor="let hero of heroes">
 {{hero.id}} {{hero.name}}

Selecting a Hero

We have a list of heroes and we have a single hero displayed in our app.
The list and the single hero are not connected in any way.
We want the user to select a hero from our list, and have the selected hero appear in the details view.
This UI pattern is widely known as "master-detail".
In our case, the master is the heroes list and the detail is the selected hero.

Let’s connect the master to the detail through a selectedHero component property bound to a click event.

Click event

We modify the by inserting an Angular event binding to its click event.

app.component.ts (template excerpt)
<li *ngFor="let hero of heroes" (click)="onSelect(hero)">
 {{hero.id}} {{hero.name}}

Focus on the event binding

(click)="onSelect(hero)"The parenthesis identify the element’s click event as the target.
The expression to the right of the equal sign calls the AppComponent method, onSelect(),
passing the template input variable hero as an argument.
That’s the same hero variable we defined previously in the ngFor.

Add the click handler

Our event binding refers to an onSelect method that doesn’t exist yet.
We’ll add that method to our component now.

What should that method do? It should set the component’s selected hero to the hero that the user clicked.

Our component doesn’t have a “selected hero” yet either. We’ll start there.

Expose the selected hero

We no longer need the static hero property of the AppComponent.
Replace it with this simple selectedHero property:

app.component.ts (selectedHero)
selectedHero: Hero;
We’ve decided that none of the heroes should be selected before the user picks a hero so
we won’t initialize the selectedHero as we were doing with hero.

Now add an onSelect method that sets the selectedHero property to the hero the user clicked.

app.component.ts (onSelect)
onSelect(hero: Hero): void {
 this.selectedHero = hero;
}
We will be showing the selected hero's details in our template.
At the moment, it is still referring to the old hero property.
Let’s fix the template to bind to the new selectedHero property.

app.component.ts (template excerpt)
<h2>{{selectedHero.name}} details!</h2>
<div><label>id: </label>{{selectedHero.id}}</div>
<div>
 <label>name: </label>
 <input [(ngModel)]="selectedHero.name" placeholder="name"/>
</div>
Hide the empty detail with ngIf

When our app loads we see a list of heroes, but a hero is not selected.
The selectedHero is undefined.
That’s why we'll see the following error in the browser’s console:

EXCEPTION: TypeError: Cannot read property 'name' of undefined in [null]
Remember that we are displaying selectedHero.name in the template.
This name property does not exist because selectedHero itself is undefined.

We'll address this problem by keeping the hero detail out of the DOM until there is a selected hero.

We wrap the HTML hero detail content of our template with a <div>.
Then we add the ngIf built-in directive and set it to the selectedHero property of our component.

app.component.ts (ngIf)
<div *ngIf="selectedHero">
 <h2>{{selectedHero.name}} details!</h2>
 <div><label>id: </label>{{selectedHero.id}}</div>
 <div>
 <label>name: </label>
 <input [(ngModel)]="selectedHero.name" placeholder="name"/>
 </div>
</div>
Remember that the leading asterisk (*) in front of ngIf is
a critical part of this syntax.

When there is no selectedHero, the ngIf directive removes the hero detail HTML from the DOM.
There will be no hero detail elements and no bindings to worry about.

When the user picks a hero, selectedHero becomes "truthy" and
ngIf puts the hero detail content into the DOM and evaluates the nested bindings.

ngIf and ngFor are called “structural directives” because they can change the
structure of portions of the DOM.
In other words, they give structure to the way Angular displays content in the DOM.

Learn more about ngIf, ngFor and other structural directives in the
Structural Directives and
Template Syntax chapters.

The browser refreshes and we see the list of heroes but not the selected hero detail.
The ngIf keeps it out of the DOM as long as the selectedHero is undefined.
When we click on a hero in the list, the selected hero displays in the hero details.
Everything is working as we expect.

Styling the selection

We see the selected hero in the details area below but we can’t quickly locate that hero in the list above.
We can fix that by applying the selected CSS class to the appropriate in the master list.
For example, when we select Magneta from the heroes list,
we can make it pop out visually by giving it a subtle background color as shown here.

[image: Selected hero]We’ll add a property binding on class for the selected class to the template. We'll set this to an expression that compares the current selectedHero to the hero.

The key is the name of the CSS class (selected). The value is true if the two heroes match and false otherwise.
We’re saying “apply the selected class if the heroes match, remove it if they don’t”.

app.component.ts (setting the CSS class)
[class.selected]="hero === selectedHero"
Notice in the template that the class.selected is surrounded in square brackets ([]).
This is the syntax for a property binding, a binding in which data flows one way
from the data source (the expression hero === selectedHero) to a property of class.

app.component.ts (styling each hero)
<li *ngFor="let hero of heroes"
 [class.selected]="hero === selectedHero"
 (click)="onSelect(hero)">
 {{hero.id}} {{hero.name}}

The browser reloads our app.
We select the hero Magneta and the selection is clearly identified by the background color.

[image: Output of heroes list app]We select a different hero and the tell-tale color switches to that hero.

Here's the complete app.component.ts as it stands now:

app.component.ts
import { Component } from '@angular/core';

export class Hero {
 id: number;
 name: string;
}

const HEROES: Hero[] = [
 { id: 11, name: 'Mr. Nice' },
 { id: 12, name: 'Narco' },
 { id: 13, name: 'Bombasto' },
 { id: 14, name: 'Celeritas' },
 { id: 15, name: 'Magneta' },
 { id: 16, name: 'RubberMan' },
 { id: 17, name: 'Dynama' },
 { id: 18, name: 'Dr IQ' },
 { id: 19, name: 'Magma' },
 { id: 20, name: 'Tornado' }
];

@Component({
 selector: 'my-app',
 template: `
 <h1>{{title}}</h1>
 <h2>My Heroes</h2>
 <ul class="heroes">
 <li *ngFor="let hero of heroes"
 [class.selected]="hero === selectedHero"
 (click)="onSelect(hero)">
 {{hero.id}} {{hero.name}}

 <div *ngIf="selectedHero">
 <h2>{{selectedHero.name}} details!</h2>
 <div><label>id: </label>{{selectedHero.id}}</div>
 <div>
 <label>name: </label>
 <input [(ngModel)]="selectedHero.name" placeholder="name"/>
 </div>
 </div>
 `,
 styles: [`
 .selected {
 background-color: #CFD8DC !important;
 color: white;
 }
 .heroes {
 margin: 0 0 2em 0;
 list-style-type: none;
 padding: 0;
 width: 15em;
 }
 .heroes li {
 cursor: pointer;
 position: relative;
 left: 0;
 background-color: #EEE;
 margin: .5em;
 padding: .3em 0;
 height: 1.6em;
 border-radius: 4px;
 }
 .heroes li.selected:hover {
 background-color: #BBD8DC !important;
 color: white;
 }
 .heroes li:hover {
 color: #607D8B;
 background-color: #DDD;
 left: .1em;
 }
 .heroes .text {
 position: relative;
 top: -3px;
 }
 .heroes .badge {
 display: inline-block;
 font-size: small;
 color: white;
 padding: 0.8em 0.7em 0 0.7em;
 background-color: #607D8B;
 line-height: 1em;
 position: relative;
 left: -1px;
 top: -4px;
 height: 1.8em;
 margin-right: .8em;
 border-radius: 4px 0 0 4px;
 }
 `]
})
export class AppComponent {
 title = 'Tour of Heroes';
 heroes = HEROES;
 selectedHero: Hero;

 onSelect(hero: Hero): void {
 this.selectedHero = hero;
 }
}

The Road We’ve Travelled

Here’s what we achieved in this chapter:

	Our Tour of Heroes now displays a list of selectable heroes

	We added the ability to select a hero and show the hero’s details

	We learned how to use the built-in directives ngIf and ngFor in a component’s template

Run the for this part.

The Road Ahead

Our Tour of Heroes has grown, but it’s far from complete.
We can't put the entire app into a single component.
We need to break it up into sub-components and teach them to work together
as we learn in the next chapter.

4. Multiple Components
Our app is growing.
Use cases are flowing in for reusing components, passing data to components, and creating more reusable assets. Let's separate the heroes list from the hero details and make the details component reusable.

Run the for this part.

Where We Left Off

Before we continue with our Tour of Heroes, let’s verify we have the following structure. If not, we’ll need to go back and follow the previous chapters.

angular2-tour-of-heroes
app
app.component.ts
app.module.ts
main.ts

node_modules ...
typings ...
index.html
package.json
styles.css
systemjs.config.js
tsconfig.json
typings.json

Keep the app transpiling and running

We want to start the TypeScript compiler, have it watch for changes, and start our server. We'll do this by typing

npm start
This will keep the application running while we continue to build the Tour of Heroes.

Making a Hero Detail Component

Our heroes list and our hero details are in the same component in the same file.
They're small now but each could grow.
We are sure to receive new requirements for one and not the other.
Yet every change puts both components at risk and doubles the testing burden without benefit.
If we had to reuse the hero details elsewhere in our app,
the heroes list would tag along for the ride.

Our current component violates the
Single Responsibility Principle.
It's only a tutorial but we can still do things right —
especially if doing them right is easy and we learn how to build Angular apps in the process.

Let’s break the hero details out into its own component.

Separating the Hero Detail Component

Add a new file named hero-detail.component.ts to the app folder and create HeroDetailComponent as follows.

app/hero-detail.component.ts (initial version)
import { Component, Input } from '@angular/core';

@Component({
 selector: 'my-hero-detail',
})
export class HeroDetailComponent {
}
Naming conventions

We like to identify at a glance which classes are components and which files contain components.

Notice that we have an AppComponent in a file named app.component.ts and our new
HeroDetailComponent is in a file named hero-detail.component.ts.

All of our component names end in "Component". All of our component file names end in ".component".

We spell our file names in lower dash case
(AKA kebab-case) so we don't worry about
case sensitivity on the server or in source control.

We begin by importing the Component and Input decorators from Angular because we're going to need them soon.

We create metadata with the @Component decorator where we
specify the selector name that identifies this component's element.
Then we export the class to make it available to other components.

When we finish here, we'll import it into AppComponent and create a corresponding <my-hero-detail> element.

Hero Detail Template

At the moment, the Heroes and Hero Detail views are combined in one template in AppComponent.
Let’s cut the Hero Detail content from AppComponent and paste it into the new template property of HeroDetailComponent.

We previously bound to the selectedHero.name property of the AppComponent.
Our HeroDetailComponent will have a hero property, not a selectedHero property.
So we replace selectedHero with hero everywhere in our new template. That's our only change.
The result looks like this:

app/hero-detail.component.ts (template)
template: `
 <div *ngIf="hero">
 <h2>{{hero.name}} details!</h2>
 <div><label>id: </label>{{hero.id}}</div>
 <div>
 <label>name: </label>
 <input [(ngModel)]="hero.name" placeholder="name"/>
 </div>
 </div>
`
Now our hero detail layout exists only in the HeroDetailComponent.

Add the hero property

Let’s add that hero property we were talking about to the component class.

hero: Hero;
Uh oh. We declared the hero property as type Hero but our Hero class is over in the app.component.ts file.
We have two components, each in their own file, that need to reference the Hero class.

We solve the problem by relocating the Hero class from app.component.ts to its own hero.ts file.

app/hero.ts
export class Hero {
 id: number;
 name: string;
}
We export the Hero class from hero.ts because we'll need to reference it in both component files.
Add the following import statement near the top of both app.component.ts and hero-detail.component.ts.

import { Hero } from './hero';
The hero property is an input

The HeroDetailComponent must be told what hero to display. Who will tell it? The parent AppComponent!

The AppComponent knows which hero to show: the hero that the user selected from the list.
The user's selection is in its selectedHero property.

We will soon update the AppComponent template so that it binds its selectedHero property
to the hero property of our HeroDetailComponent. The binding might look like this:

<my-hero-detail [hero]="selectedHero"></my-hero-detail>Notice that the hero property is the target of a property binding — it's in square brackets to the left of the (=).

Angular insists that we declare a target property to be an input property.
If we don't, Angular rejects the binding and throws an error.

We explain input properties in more detail here
where we also explain why target properties require this special treatment and
source properties do not.

There are a couple of ways we can declare that hero is an input.
We'll do it the way we prefer, by annotating the hero property with the @Input decorator that we imported earlier.

 @Input()
 hero: Hero;
Refresh the AppModule

We return to the AppModule, the application's root module, and teach it to use the HeroDetailComponent.

We begin by importing the HeroDetailComponent so we can refer to it.

import { HeroDetailComponent } from './hero-detail.component';
Then we add HeroDetailComponent to the NgModule decorator's declarations array.
This array contains the list of all components, pipes, and directives that we created
and that belong in our application's module.

@NgModule({
 imports: [
 BrowserModule,
 FormsModule
],
 declarations: [
 AppComponent,
 HeroDetailComponent
],
 bootstrap: [AppComponent]
})
export class AppModule { }
Refresh the AppComponent

Now that the application knows about our HeroDetailComponent,
find the location in the AppComponent template where we removed the Hero Detail content
and add an element tag that represents the HeroDetailComponent.

<my-hero-detail></my-hero-detail>my-hero-detail is the name we set as the selector in the HeroDetailComponent metadata.

The two components won't coordinate until we bind the selectedHero property of the AppComponent
to the HeroDetailComponent element's hero property like this:

<my-hero-detail [hero]="selectedHero"></my-hero-detail>The AppComponent’s template should now look like this

app.component.ts (template)
template: `
 <h1>{{title}}</h1>
 <h2>My Heroes</h2>
 <ul class="heroes">
 <li *ngFor="let hero of heroes"
 [class.selected]="hero === selectedHero"
 (click)="onSelect(hero)">
 {{hero.id}} {{hero.name}}

 <my-hero-detail [hero]="selectedHero"></my-hero-detail>
`,
Thanks to the binding, the HeroDetailComponent should receive the hero from the AppComponent and display that hero's detail beneath the list.
The detail should update every time the user picks a new hero.

It works!

When we view our app in the browser we see the list of heroes.
When we select a hero we can see the selected hero’s details.

What's fundamentally new is that we can use this HeroDetailComponent
to show hero details anywhere in the app.

We’ve created our first reusable component!

Reviewing the App Structure

Let’s verify that we have the following structure after all of our good refactoring in this chapter:

angular2-tour-of-heroes
app
app.component.ts
app.module.ts
hero.ts
hero-detail.component.ts
main.ts

node_modules ...
typings ...
index.html
package.json
tsconfig.json
typings.json

Here are the code files we discussed in this chapter.

import { Component, Input } from '@angular/core';

import { Hero } from './hero';

@Component({
 selector: 'my-hero-detail',
 template: `
 <div *ngIf="hero">
 <h2>{{hero.name}} details!</h2>
 <div><label>id: </label>{{hero.id}}</div>
 <div>
 <label>name: </label>
 <input [(ngModel)]="hero.name" placeholder="name"/>
 </div>
 </div>
 `
})
export class HeroDetailComponent {
 @Input()
 hero: Hero;
}
import { Component } from '@angular/core';

import { Hero } from './hero';

const HEROES: Hero[] = [
 { id: 11, name: 'Mr. Nice' },
 { id: 12, name: 'Narco' },
 { id: 13, name: 'Bombasto' },
 { id: 14, name: 'Celeritas' },
 { id: 15, name: 'Magneta' },
 { id: 16, name: 'RubberMan' },
 { id: 17, name: 'Dynama' },
 { id: 18, name: 'Dr IQ' },
 { id: 19, name: 'Magma' },
 { id: 20, name: 'Tornado' }
];

@Component({
 selector: 'my-app',
 template: `
 <h1>{{title}}</h1>
 <h2>My Heroes</h2>
 <ul class="heroes">
 <li *ngFor="let hero of heroes"
 [class.selected]="hero === selectedHero"
 (click)="onSelect(hero)">
 {{hero.id}} {{hero.name}}

 <my-hero-detail [hero]="selectedHero"></my-hero-detail>
 `,
 styles: [`
 .selected {
 background-color: #CFD8DC !important;
 color: white;
 }
 .heroes {
 margin: 0 0 2em 0;
 list-style-type: none;
 padding: 0;
 width: 15em;
 }
 .heroes li {
 cursor: pointer;
 position: relative;
 left: 0;
 background-color: #EEE;
 margin: .5em;
 padding: .3em 0;
 height: 1.6em;
 border-radius: 4px;
 }
 .heroes li.selected:hover {
 background-color: #BBD8DC !important;
 color: white;
 }
 .heroes li:hover {
 color: #607D8B;
 background-color: #DDD;
 left: .1em;
 }
 .heroes .text {
 position: relative;
 top: -3px;
 }
 .heroes .badge {
 display: inline-block;
 font-size: small;
 color: white;
 padding: 0.8em 0.7em 0 0.7em;
 background-color: #607D8B;
 line-height: 1em;
 position: relative;
 left: -1px;
 top: -4px;
 height: 1.8em;
 margin-right: .8em;
 border-radius: 4px 0 0 4px;
 }
 `]
})
export class AppComponent {
 title = 'Tour of Heroes';
 heroes = HEROES;
 selectedHero: Hero;

 onSelect(hero: Hero): void {
 this.selectedHero = hero;
 }
}
export class Hero {
 id: number;
 name: string;
}
import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';
import { FormsModule } from '@angular/forms';

import { AppComponent } from './app.component';
import { HeroDetailComponent } from './hero-detail.component';

@NgModule({
 imports: [
 BrowserModule,
 FormsModule
],
 declarations: [
 AppComponent,
 HeroDetailComponent
],
 bootstrap: [AppComponent]
})
export class AppModule { }
The Road We’ve Travelled

Let’s take stock of what we’ve built.

	We created a reusable component

	We learned how to make a component accept input

	We learned to declare the application directives we need in an Angular module. We
list the directives in the NgModule decorator's declarations array.

	We learned to bind a parent component to a child component.

Run the for this part.

The Road Ahead

Our Tour of Heroes has become more reusable with shared components.

We're still getting our (mock) data within the AppComponent.
That's not sustainable.
We should refactor data access to a separate service
and share it among the components that need data.

We’ll learn to create services in the next tutorial chapter.

5. Services

The Tour of Heroes is evolving and we anticipate adding more components in the near future.

Multiple components will need access to hero data and we don't want to copy and
paste the same code over and over.
Instead, we'll create a single reusable data service and learn to
inject it in the components that need it.

Refactoring data access to a separate service keeps the component lean and focused on supporting the view.
It also makes it easier to unit test the component with a mock service.

Because data services are invariably asynchronous,
we'll finish the chapter with a Promise-based version of the data service.

Run the for this part.

Where We Left Off

Before we continue with our Tour of Heroes, let’s verify we have the following structure.
If not, we’ll need to go back and follow the previous chapters.

angular2-tour-of-heroes
app
app.component.ts
app.module.ts
hero.ts
hero-detail.component.ts
main.ts

node_modules ...
typings ...
index.html
package.json
styles.css
systemjs.config.js
tsconfig.json
typings.json

Keep the app transpiling and running

Open a terminal/console window.
Start the TypeScript compiler, watch for changes, and start our server by entering the command:

npm start
The application runs and updates automatically as we continue to build the Tour of Heroes.

Creating a Hero Service

Our stakeholders have shared their larger vision for our app.
They tell us they want to show the heroes in various ways on different pages.
We already can select a hero from a list.
Soon we'll add a dashboard with the top performing heroes and create a separate view for editing hero details.
All three views need hero data.

At the moment the AppComponent defines mock heroes for display.
We have at least two objections.
First, defining heroes is not the component's job.
Second, we can't easily share that list of heroes with other components and views.

We can refactor this hero data acquisition business to a single service that provides heroes, and
share that service with all components that need heroes.

Create the HeroService

Create a file in the app folder called hero.service.ts.

We've adopted a convention in which we spell the name of a service in lowercase followed by .service.
If the service name were multi-word, we'd spell the base filename in lower dash-case.
The SpecialSuperHeroService would be defined in the special-super-hero.service.ts file.

We name the class HeroService and export it for others to import.

app/hero.service.ts (starting point)
import { Injectable } from '@angular/core';

@Injectable()
export class HeroService {
}
Injectable Services

Notice that we imported the Angular Injectable function and applied that function as an @Injectable() decorator.

Don't forget the parentheses! Neglecting them leads to an error that's difficult to diagnose.

TypeScript sees the @Injectable() decorator and emits metadata about our service,
metadata that Angular may need to inject other dependencies into this service.

The HeroService doesn't have any dependencies at the moment. Add the decorator anyway.
It is a "best practice" to apply the @Injectable() decorator ​from the start​
both for consistency and for future-proofing.

Getting Heroes

Add a getHeroes method stub.

app/hero.service.ts (getHeroes stub)
@Injectable()
export class HeroService {
 getHeroes(): void {} // stub
}
We're holding back on the implementation for a moment to make an important point.

The consumer of our service doesn't know how the service gets the data.
Our HeroService could get Hero data from anywhere.
It could get the data from a web service or local storage
or from a mock data source.

That's the beauty of removing data access from the component.
We can change our minds about the implementation as often as we like,
for whatever reason, without touching any of the components that need heroes.

Mock Heroes

We already have mock Hero data sitting in the AppComponent. It doesn't belong there. It doesn't belong here either.
We'll move the mock data to its own file.

Cut the HEROES array from app.component.ts and paste it to a new file in the app folder named mock-heroes.ts.
We copy the import {Hero} ... statement as well because the heroes array uses the Hero class.

app/mock-heroes.ts
import { Hero } from './hero';

export const HEROES: Hero[] = [
 {id: 11, name: 'Mr. Nice'},
 {id: 12, name: 'Narco'},
 {id: 13, name: 'Bombasto'},
 {id: 14, name: 'Celeritas'},
 {id: 15, name: 'Magneta'},
 {id: 16, name: 'RubberMan'},
 {id: 17, name: 'Dynama'},
 {id: 18, name: 'Dr IQ'},
 {id: 19, name: 'Magma'},
 {id: 20, name: 'Tornado'}
];
We export the HEROES constant so we can import it elsewhere — such as our HeroService.

Meanwhile, back in app.component.ts where we cut away the HEROES array,
we leave behind an uninitialized heroes property:

app/app.component.ts (heroes property)
heroes: Hero[];
Return Mocked Heroes

Back in the HeroService we import the mock HEROES and return it from the getHeroes method.
Our HeroService looks like this:

app/hero.service.ts
import { Injectable } from '@angular/core';

import { Hero } from './hero';
import { HEROES } from './mock-heroes';

@Injectable()
export class HeroService {
 getHeroes(): Hero[] {
 return HEROES;
 }
}
Use the Hero Service

We're ready to use the HeroService in other components starting with our AppComponent.

We begin, as usual, by importing the thing we want to use, the HeroService.

import { HeroService } from './hero.service';
Importing the service allows us to reference it in our code.
How should the AppComponent acquire a runtime concrete HeroService instance?

Do we new the HeroService? No way!

We could create a new instance of the HeroService with new like this:

heroService = new HeroService(); // don't do this
That's a bad idea for several reasons including

	Our component has to know how to create a HeroService.
If we ever change the HeroService constructor,
we'll have to find every place we create the service and fix it.
Running around patching code is error prone and adds to the test burden.

	We create a new service each time we use new.
What if the service should cache heroes and share that cache with others?
We couldn't do that.

	We're locking the AppComponent into a specific implementation of the HeroService.
It will be hard to switch implementations for different scenarios.
Can we operate offline?
Will we need different mocked versions under test?
Not easy.

What if ... what if ... Hey, we've got work to do!

We get it. Really we do.
But it is so ridiculously easy to avoid these problems that there is no excuse for doing it wrong.

Inject the HeroService

Two lines replace the one line that created with new:

	We add a constructor that also defines a private property.

	We add to the component's providers metadata.

Here's the constructor:

app/app.component.ts (constructor)
constructor(private heroService: HeroService) { }
The constructor itself does nothing. The parameter simultaneously
defines a private heroService property and identifies it as a HeroService injection site.

Now Angular will know to supply an instance of the HeroService when it creates a new AppComponent.

The injector does not know yet how to create a HeroService.
If we ran our code now, Angular would fail with an error:

EXCEPTION: No provider for HeroService! (AppComponent -> HeroService)We have to teach the injector how to make a HeroService by registering a HeroService provider.
Do that by adding the following providers array property to the bottom of the component metadata
in the @Component call.

providers: [HeroService]
The providers array tells Angular to create a fresh instance of the HeroService when it creates a new AppComponent.
The AppComponent can use that service to get heroes and so can every child component of its component tree.

getHeroes in the AppComponent

We've got the service in a heroService private variable. Let's use it.

We pause to think. We can call the service and get the data in one line.

this.heroes = this.heroService.getHeroes();
We don't really need a dedicated method to wrap one line. We write it anyway:

 getHeroes(): void {
 this.heroes = this.heroService.getHeroes();
 }
The ngOnInit Lifecycle Hook

AppComponent should fetch and display heroes without a fuss.
Where do we call the getHeroes method? In a constructor? We do not!

Years of experience and bitter tears have taught us to keep complex logic out of the constructor,
especially anything that might call a server as a data access method is sure to do.

The constructor is for simple initializations like wiring constructor parameters to properties.
It's not for heavy lifting. We should be able to create a component in a test and not worry that it
might do real work — like calling a server! — before we tell it to do so.

If not the constructor, something has to call getHeroes.

Angular will call it if we implement the Angular ngOnInit Lifecycle Hook.
Angular offers a number of interfaces for tapping into critical moments in the component lifecycle:
at creation, after each change, and at its eventual destruction.

Each interface has a single method. When the component implements that method, Angular calls it at the appropriate time.

Here's the essential outline for the OnInit interface:

app/app.component.ts (ngOnInit stub)
import { OnInit } from '@angular/core';

export class AppComponent implements OnInit {
 ngOnInit(): void {
 }
}
We write an ngOnInit method with our initialization logic inside and leave it to Angular to call it
at the right time. In our case, we initialize by calling getHeroes.

 ngOnInit(): void {
 this.getHeroes();
 }
Our application should be running as expected, showing a list of heroes and a hero detail view
when we click on a hero name.

We're getting closer. But something isn't quite right.

Async Services and Promises

Our HeroService returns a list of mock heroes immediately.
Its getHeroes signature is synchronous

this.heroes = this.heroService.getHeroes();
Ask for heroes and they are there in the returned result.

Someday we're going to get heroes from a remote server. We don’t call http yet, but we aspire to in later chapters.

When we do, we'll have to wait for the server to respond and we won't be able to block the UI while we wait,
even if we want to (which we shouldn't) because the browser won't block.

We'll have to use some kind of asynchronous technique and that will change the signature of our getHeroes method.

We'll use Promises.

The Hero Service makes a Promise

A Promise is ... well it's a promise to call us back later when the results are ready.
We ask an asynchronous service to do some work and give it a callback function.
It does that work (somewhere) and eventually it calls our function with the results of the work or an error.

We are simplifying. Learn about ES2015 Promises here and elsewhere on the web.

Update the HeroService with this Promise-returning getHeroes method:

app/hero.service.ts (excerpt)
getHeroes(): Promise<Hero[]> {
 return Promise.resolve(HEROES);
}
We're still mocking the data. We're simulating the behavior of an ultra-fast, zero-latency server,
by returning an immediately resolved Promise with our mock heroes as the result.

Act on the Promise

Returning to the AppComponent and its getHeroes method, we see that it still looks like this:

app/app.component.ts (getHeroes - old)
 getHeroes(): void {
 this.heroes = this.heroService.getHeroes();
 }
As a result of our change to HeroService, we're now setting this.heroes to a Promise rather than an array of heroes.

We have to change our implementation to act on the Promise when it resolves.
When the Promise resolves successfully, then we will have heroes to display.

We pass our callback function as an argument to the Promise's then method:

app/app.component.ts (getHeroes - revised)
getHeroes(): void {
 this.heroService.getHeroes().then(heroes => this.heroes = heroes);
}
The ES2015 arrow function
in the callback is more succinct than the equivalent function expression and gracefully handles this.

Our callback sets the component's heroes property to the array of heroes returned by the service. That's all there is to it!

Our app should still be running, still showing a list of heroes, and still
responding to a name selection with a detail view.

Checkout the "Take it slow" appendix to see what the app might be like with a poor connection.

Review the App Structure

Let’s verify that we have the following structure after all of our good refactoring in this chapter:

angular2-tour-of-heroes
app
app.component.ts
app.module.ts
hero.ts
hero-detail.component.ts
hero.service.ts
main.ts
mock-heroes.ts

node_modules ...
typings ...
index.html
package.json
styles.css
systemjs.config.js
tsconfig.json
typings.json

Here are the code files we discussed in this chapter.

import { Injectable } from '@angular/core';

import { Hero } from './hero';
import { HEROES } from './mock-heroes';

@Injectable()
export class HeroService {
 getHeroes(): Promise<Hero[]> {
 return Promise.resolve(HEROES);
 }
}
import { Component, OnInit } from '@angular/core';

import { Hero } from './hero';
import { HeroService } from './hero.service';

@Component({
 selector: 'my-app',
 template: `
 <h1>{{title}}</h1>
 <h2>My Heroes</h2>
 <ul class="heroes">
 <li *ngFor="let hero of heroes"
 [class.selected]="hero === selectedHero"
 (click)="onSelect(hero)">
 {{hero.id}} {{hero.name}}

 <my-hero-detail [hero]="selectedHero"></my-hero-detail>
 `,
 styles: [`
 .selected {
 background-color: #CFD8DC !important;
 color: white;
 }
 .heroes {
 margin: 0 0 2em 0;
 list-style-type: none;
 padding: 0;
 width: 15em;
 }
 .heroes li {
 cursor: pointer;
 position: relative;
 left: 0;
 background-color: #EEE;
 margin: .5em;
 padding: .3em 0;
 height: 1.6em;
 border-radius: 4px;
 }
 .heroes li.selected:hover {
 background-color: #BBD8DC !important;
 color: white;
 }
 .heroes li:hover {
 color: #607D8B;
 background-color: #DDD;
 left: .1em;
 }
 .heroes .text {
 position: relative;
 top: -3px;
 }
 .heroes .badge {
 display: inline-block;
 font-size: small;
 color: white;
 padding: 0.8em 0.7em 0 0.7em;
 background-color: #607D8B;
 line-height: 1em;
 position: relative;
 left: -1px;
 top: -4px;
 height: 1.8em;
 margin-right: .8em;
 border-radius: 4px 0 0 4px;
 }
 `],
 providers: [HeroService]
})
export class AppComponent implements OnInit {
 title = 'Tour of Heroes';
 heroes: Hero[];
 selectedHero: Hero;

 constructor(private heroService: HeroService) { }

 getHeroes(): void {
 this.heroService.getHeroes().then(heroes => this.heroes = heroes);
 }

 ngOnInit(): void {
 this.getHeroes();
 }

 onSelect(hero: Hero): void {
 this.selectedHero = hero;
 }
}
import { Hero } from './hero';

export const HEROES: Hero[] = [
 {id: 11, name: 'Mr. Nice'},
 {id: 12, name: 'Narco'},
 {id: 13, name: 'Bombasto'},
 {id: 14, name: 'Celeritas'},
 {id: 15, name: 'Magneta'},
 {id: 16, name: 'RubberMan'},
 {id: 17, name: 'Dynama'},
 {id: 18, name: 'Dr IQ'},
 {id: 19, name: 'Magma'},
 {id: 20, name: 'Tornado'}
];
The Road We’ve Travelled

Let’s take stock of what we’ve built.

	We created a service class that can be shared by many components.

	We used the ngOnInit Lifecycle Hook to get our heroes when our AppComponent activates.

	We defined our HeroService as a provider for our AppComponent.

	We created mock hero data and imported them into our service.

	We designed our service to return a Promise and our component to get our data from the Promise.

Run the for this part.

The Road Ahead

Our Tour of Heroes has become more reusable using shared components and services.
We want to create a dashboard, add menu links that route between the views, and format data in a template.
As our app evolves, we’ll learn how to design it to make it easier to grow and maintain.

We learn about Angular Component Router and navigation among the views in the next tutorial chapter.

Appendix: Take it slow

We can simulate a slow connection.

Import the Hero symbol and add the following getHeroesSlowly method to the HeroService

app/hero.service.ts (getHeroesSlowly)
getHeroesSlowly(): Promise<Hero[]> {
 return new Promise<Hero[]>(resolve =>
 setTimeout(resolve, 2000)) // delay 2 seconds
 .then(() => this.getHeroes());
}
Like getHeroes, it also returns a Promise.
But this Promise waits 2 seconds before resolving the Promise with mock heroes.

Back in the AppComponent, replace heroService.getHeroes with heroService.getHeroesSlowly
and see how the app behaves.

6. Routing

We received new requirements for our Tour of Heroes application:

	Add a Dashboard view.

	Navigate between the Heroes and Dashboard views.

	Clicking on a hero in either view navigates to a detail view of the selected hero.

	Clicking a deep link in an email opens the detail view for a particular hero.

When we’re done, users will be able to navigate the app like this:

[image: View navigations]We'll add Angular’s Component Router to our app to satisfy these requirements.

Run the for this part.

[image: pop out the window]To see the URL changes in the browser address bar,
pop out the preview window by clicking the blue 'X' button in the upper right corner:

Where We Left Off

Before we continue with our Tour of Heroes, let’s verify that
we have the following structure after adding our hero service
and hero detail component. If not, we’ll need to go back and follow the previous chapters.

angular2-tour-of-heroes
app
app.component.ts
app.module.ts
hero.service.ts
hero.ts
hero-detail.component.ts
main.ts
mock-heroes.ts

node_modules ...
typings ...
index.html
package.json
styles.css
systemjs.config.js
tsconfig.json
typings.json

Keep the app transpiling and running

Open a terminal/console window and enter the following command to
start the TypeScript compiler, start the server, and watch for changes:

npm start
The application runs and updates automatically as we continue to build the Tour of Heroes.

Action plan

Here's our plan:

	Turn AppComponent into an application shell that only handles navigation

	Relocate the Heroes concerns within the current AppComponent to a separate HeroesComponent

	Add routing

	Create a new DashboardComponent

	Tie the Dashboard into the navigation structure

Routing is another name for navigation. The router is the mechanism for navigating from view to view.

Splitting the AppComponent

Our current app loads AppComponent and immediately displays the list of heroes.

Our revised app should present a shell with a choice of views (Dashboard and Heroes)
and then default to one of them.

The AppComponent should only handle navigation.
Let's move the display of Heroes out of AppComponent and into its own HeroesComponent.

HeroesComponent

AppComponent is already dedicated to Heroes.
Instead of moving anything out of AppComponent, we'll just rename it HeroesComponent
and create a new AppComponent shell separately.

The steps are to rename:

	app.component.ts file to heroes.component.ts

	AppComponent class to HeroesComponent

	Selector my-app to my-heroes

app/heroes.component.ts (showing renamings only)
@Component({
 selector: 'my-heroes',
})
export class HeroesComponent implements OnInit {
}
Create AppComponent

The new AppComponent will be the application shell.
It will have some navigation links at the top and a display area below for the pages we navigate to.

The initial steps are:

	Create the file app/app.component.ts.

	Define an exported AppComponent class.

	Add an @Component decorator above the class with a my-app selector.

	Move the following from HeroesComponent to AppComponent:
	title class property

	@Component template <h1> element, which contains a binding to title

	Add a <my-heroes> element to the app template just below the heading so we still see the heroes.

	Add HeroesComponent to the declarations array of AppModule so Angular recognizes the <my-heroes> tags.

	Add HeroService to the providers array of AppModule because we'll need it in every other view.

	Remove HeroService from the HeroesComponent providers array since it has been promoted.

	Add the supporting import statements for AppComponent.

Our first draft looks like this:

import { Component } from '@angular/core';

@Component({
 selector: 'my-app',
 template: `
 <h1>{{title}}</h1>
 <my-heroes></my-heroes>
 `
})
export class AppComponent {
 title = 'Tour of Heroes';
}
import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';
import { FormsModule } from '@angular/forms';

import { AppComponent } from './app.component';
import { HeroDetailComponent } from './hero-detail.component';
import { HeroesComponent } from './heroes.component';
import { HeroService } from './hero.service';

@NgModule({
 imports: [
 BrowserModule,
 FormsModule
],
 declarations: [
 AppComponent,
 HeroDetailComponent,
 HeroesComponent
],
 providers: [
 HeroService
],
 bootstrap: [AppComponent]
})
export class AppModule {
}
The app still runs and still displays heroes.
Our refactoring of AppComponent into a new AppComponent and a HeroesComponent worked!
We have done no harm.

Add Routing

We're ready to take the next step.
Instead of displaying heroes automatically, we'd like to show them after the user clicks a button.
In other words, we'd like to navigate to the list of heroes.

We'll need the Angular Component Router.

The Angular router is an external, optional Angular NgModule called RouterModule.
The router is a combination of multiple provided services (RouterModule),
multiple directives (RouterOutlet, RouterLink, RouterLinkActive),
and a configuration (Routes). We'll configure our routes first.

Add the base tag

Open index.html and add <base href="/"> at the top of the <head> section.

index.html (base-href)
<head>
 <base href="/">
base href is essentialSee the base href section of the Router
chapter to learn why this matters.

Configure routes

Our application doesn't have any routes yet.
We'll start by creating a configuration file for the application routes.

Routes tell the router which views to display when a user clicks a link or
pastes a URL into the browser address bar.

Let's define our first route as a route to the heroes component:

app/app.routing.ts (heroes route)
import { ModuleWithProviders } from '@angular/core';
import { Routes, RouterModule } from '@angular/router';

import { HeroesComponent } from './heroes.component';

const appRoutes: Routes = [
 {
 path: 'heroes',
 component: HeroesComponent
 }
];
The Routes are an array of route definitions.
We have only one route definition at the moment but rest assured, we'll add more.

This route definition has the following parts:

	path: the router matches this route's path to the URL in the browser address bar (heroes).
	 name: the official name of the route;
it must begin with a capital letter to avoid confusion with the path (Heroes).

	component: the component that the router should create when navigating to this route (HeroesComponent).

Learn more about defining routes with Routes in the Routing chapter.

We'll export a routing constant initialized using the RouterModule.forRoot method applied to our array of routes.
This method returns a configured router module that we'll add to our root NgModule, AppModule.

app/app.routing.ts (excerpt)
export const routing: ModuleWithProviders = RouterModule.forRoot(appRoutes);
We call the forRoot method because we're providing a configured router at the root of the application.
The forRoot method gives us the Router service providers and directives needed for routing.

Make the router available

We've setup initial routes in the app.routing.ts file. Now we'll add it to our root NgModule.

Import the routing constant from app.routing.ts and add it the imports array of AppModule.

app/app.module.ts (routing)
import { routing } from './app.routing';

@NgModule({
 imports: [
 BrowserModule,
 FormsModule,
 routing
],
})
export class AppModule {
}
Router Outlet

If we paste the path, /heroes, into the browser address bar,
the router should match it to the heroes route and display the HeroesComponent.
But where?

We have to tell it where by adding a <router-outlet> element to the bottom of the template.
RouterOutlet is one of the directives provided by the RouterModule.
The router displays each component immediately below the <router-outlet> as we navigate through the application.

We don't really expect users to paste a route URL into the address bar.
We add an anchor tag to the template which, when clicked, triggers navigation to the HeroesComponent.

The revised template looks like this:

app/app.component.ts (template-v2)
template: `
 <h1>{{title}}</h1>
 Heroes
 <router-outlet></router-outlet>
 `
Notice the routerLink binding in the anchor tag.
We bind the RouterLink directive (another of the RouterModule directives) to a string
that tells the router where to navigate when the user clicks the link.

Since our link is not dynamic, we define a routing instruction with a one-time binding to our route path.
Looking back at the route configuration, we confirm that '/heroes' is the path of the route to the HeroesComponent.

Learn more about dynamic router links and the link parameters array
in the Routing chapter.

Refresh the browser. We see only the app title and heroes link. We don't see the heroes list.

The browser's address bar shows /.
The route path to HeroesComponent is /heroes, not /.
We don't have a route that matches the path /, so there is nothing to show.
That's something we'll want to fix.

We click the Heroes navigation link, the browser bar updates to /heroes,
and now we see the list of heroes. We are navigating at last!

At this stage, our AppComponent looks like this.

app/app.component.ts (v2)
import { Component } from '@angular/core';

@Component({
 selector: 'my-app',
 template: `
 <h1>{{title}}</h1>
 Heroes
 <router-outlet></router-outlet>
 `
})
export class AppComponent {
 title = 'Tour of Heroes';
}
The AppComponent is now attached to a router and displaying routed views.
For this reason and to distinguish it from other kinds of components,
we call this type of component a Router Component.

Add a Dashboard

Routing only makes sense when we have multiple views. We need another view.

Create a placeholder DashboardComponent that gives us something to navigate to and from.

app/dashboard.component.ts (v1)
import { Component } from '@angular/core';

@Component({
 selector: 'my-dashboard',
 template: '<h3>My Dashboard</h3>'
})
export class DashboardComponent { }
We’ll come back and make it more useful later.

Configure the dashboard route

Go back to app.routing.ts and teach it to navigate to the dashboard.

Import the dashboard component and
add the following route definition to the Routes array of definitions.

app/app.routing.ts (Dashboard route)
{
 path: 'dashboard',
 component: DashboardComponent
},
Also import and add DashboardComponent to our root NgModule's declarations.

app/app.module.ts (dashboard)
declarations: [
 AppComponent,
 DashboardComponent,
 HeroDetailComponent,
 HeroesComponent
],
redirectTo

We want the app to show the dashboard when it starts and
we want to see a nice URL in the browser address bar that says /dashboard.
Remember that the browser launches with / in the address bar.

We can use a redirect route to make this happen. Add the following
to our array of route definitions:

app/app.routing.ts (redirect)
{
 path: '',
 redirectTo: '/dashboard',
 pathMatch: 'full'
},
Learn about the redirects in the Routing chapter.

Finally, add a dashboard navigation link to the template, just above the Heroes link.

app/app.component.ts (template-v3)
template: `
 <h1>{{title}}</h1>
 <nav>
 Dashboard
 Heroes
 </nav>
 <router-outlet></router-outlet>
 `
We nestled the two links within <nav> tags.
They don't do anything yet but they'll be convenient when we style the links a little later in the chapter.

To see these changes in your browser, go to the application root (/) and reload.
The app displays the dashboard and we can navigate between the dashboard and the heroes.

Dashboard Top Heroes

Let’s spice up the dashboard by displaying the top four heroes at a glance.

Replace the template metadata with a templateUrl property that points to a new
template file.

app/dashboard.component.ts (templateUrl)
templateUrl: 'app/dashboard.component.html',
We specify the path all the way back to the application root —
app/ in this case —
because Angular doesn't support relative paths by default.
We can switch to component-relative paths if we prefer.

Create that file with this content:

app/dashboard.component.html (excerpt)
<h3>Top Heroes</h3>
<div class="grid grid-pad">
 <div *ngFor="let hero of heroes" (click)="gotoDetail(hero)" class="col-1-4">
 <div class="module hero">
 <h4>{{hero.name}}</h4>
 </div>
 </div>
</div>
We use *ngFor once again to iterate over a list of heroes and display their names.
We added extra <div> elements to help with styling later in this chapter.

There's a (click) binding to a gotoDetail method we haven't written yet and
we're displaying a list of heroes that we don't have.
We have work to do, starting with those heroes.

Share the HeroService

We'd like to re-use the HeroService to populate the component's heroes array.

Recall earlier in the chapter that we removed the HeroService from the providers array of HeroesComponent
and added it to the providers array of AppModule.

That move created a singleton HeroService instance, available to all components of the application.
Angular will inject HeroService and we'll use it here in the DashboardComponent.

Get heroes

Open dashboard.component.ts and add the requisite import statements.

app/dashboard.component.ts (imports)
import { Component, OnInit } from '@angular/core';

import { Hero } from './hero';
import { HeroService } from './hero.service';
Now implement the DashboardComponent class like this:

app/dashboard.component.ts (class)
export class DashboardComponent implements OnInit {

 heroes: Hero[] = [];

 constructor(private heroService: HeroService) { }

 ngOnInit(): void {
 this.heroService.getHeroes()
 .then(heroes => this.heroes = heroes.slice(1, 5));
 }

 gotoDetail(hero: Hero): void { /* not implemented yet */}
}
We've seen this kind of logic before in the HeroesComponent:

	Define a heroes array property.

	Inject the HeroService in the constructor and hold it in a private heroService field.

	Call the service to get heroes inside the Angular ngOnInit lifecycle hook.

The noteworthy differences: we cherry-pick four heroes (2nd, 3rd, 4th, and 5th)
and stub the gotoDetail method until we're ready to implement it.

Refresh the browser and see four heroes in the new dashboard.

Although we display the details of a selected hero at the bottom of the HeroesComponent,
we don't yet navigate to the HeroDetailComponent in the three ways specified in our requirements:

	from the Dashboard to a selected hero.

	from the Heroes list to a selected hero.

	from a "deep link" URL pasted into the browser address bar.

Adding a hero-detail route seems like an obvious place to start.

Routing to a hero detail

We'll add a route to the HeroDetailComponent in app.routing.ts where our other routes are configured.

The new route is a bit unusual in that we must tell the HeroDetailComponent which hero to show.
We didn't have to tell the HeroesComponent or the DashboardComponent anything.

At the moment the parent HeroesComponent sets the component's hero property to a
hero object with a binding like this.

<my-hero-detail [hero]="selectedHero"></my-hero-detail>
That clearly won't work in any of our routing scenarios.
Certainly not the last one; we can't embed an entire hero object in the URL! Nor would we want to.

Parameterized route

We can add the hero's id to the URL. When routing to the hero whose id is 11,
we could expect to see an URL such as this:

/detail/11
The /detail/ part of that URL is constant. The trailing numeric id part changes from hero to hero.
We need to represent that variable part of the route with a parameter (or token) that stands for the hero's id.

Configure a Route with a Parameter

Here's the route definition we'll use.

app/app.routing.ts (hero detail)
{
 path: 'detail/:id',
 component: HeroDetailComponent
},
The colon (:) in the path indicates that :id is a placeholder to be filled with a specific hero id
when navigating to the HeroDetailComponent.

We're finished with the application routes.

We won't add a 'Hero Detail' link to the template because users
don't click a navigation link to view a particular hero.
They click a hero whether that hero is displayed on the dashboard or in the heroes list.

We'll get to those hero clicks later in the chapter.
There's no point in working on them until the HeroDetailComponent
is ready to be navigated to.

That will require an HeroDetailComponent overhaul.

Revise the HeroDetailComponent

Before we rewrite the HeroDetailComponent, let's review what it looks like now:

app/hero-detail.component.ts (current)
import { Component, Input } from '@angular/core';
import { Hero } from './hero';

@Component({
 selector: 'my-hero-detail',
 template: `
 <div *ngIf="hero">
 <h2>{{hero.name}} details!</h2>
 <div>
 <label>id: </label>{{hero.id}}
 </div>
 <div>
 <label>name: </label>
 <input [(ngModel)]="hero.name" placeholder="name"/>
 </div>
 </div>
 `
})
export class HeroDetailComponent {
 @Input() hero: Hero;
}
The template won't change. We'll display a hero the same way.
The big changes are driven by how we get the hero.

We will no longer receive the hero in a parent component property binding.
The new HeroDetailComponent should take the id parameter from the params observable
in the ActivatedRoute service and use the HeroService to fetch the hero with that id.

First, add the requisite imports:

// Keep the Input import for now, we'll remove it later:
import { Component, Input, OnInit } from '@angular/core';
import { ActivatedRoute, Params } from '@angular/router';

import { HeroService } from './hero.service';
Let's have the ActivatedRoute service and the HeroService injected
into the constructor, saving their values in private fields:

app/hero-detail.component.ts (constructor)
constructor(
 private heroService: HeroService,
 private route: ActivatedRoute) {
}
We tell the class that we want to implement the OnInit interface.

export class HeroDetailComponent implements OnInit {
Inside the ngOnInit lifecycle hook, we use the params observable to
extract the id parameter value from the ActivateRoute service
and use the HeroService to fetch the hero with that id.

app/hero-detail.component.ts (ngOnInit)
ngOnInit(): void {
 this.route.params.forEach((params: Params) => {
 let id = +params['id'];
 this.heroService.getHero(id)
 .then(hero => this.hero = hero);
 });
}
Notice how we extract the id by calling the forEach method
which will deliver our array of route parameters.

The hero id is a number. Route parameters are always strings.
So we convert the route parameter value to a number with the JavaScript (+) operator.

Add HeroService.getHero

The problem with this bit of code is that HeroService doesn't have a getHero method!
We better fix that quickly before someone notices that we broke the app.

Open HeroService and add a getHero method that filters the heroes list from getHeroes by id:

app/hero.service.ts (getHero)
getHero(id: number): Promise<Hero> {
 return this.getHeroes()
 .then(heroes => heroes.find(hero => hero.id === id));
}
Let's return to the HeroDetailComponent to clean up loose ends.

Find our way back

We can navigate to the HeroDetailComponent in several ways.
How do we navigate somewhere else when we're done?

The user could click one of the two links in the AppComponent. Or click the browser's back button.
We'll add a third option, a goBack method that navigates backward one step in the browser's history stack.

app/hero-detail.component.ts (goBack)
goBack(): void {
 window.history.back();
}
Going back too far could take us out of the application.
That's acceptable in a demo. We'd guard against it in a real application,
perhaps with the CanDeactivate guard.

Then we wire this method with an event binding to a Back button that we
add to the bottom of the component template.

<button (click)="goBack()">Back</button>
Modifing the template to add this button spurs us to take one more
incremental improvement and migrate the template to its own file,
called hero-detail.component.html:

app/hero-detail.component.html
<div *ngIf="hero">
 <h2>{{hero.name}} details!</h2>
 <div>
 <label>id: </label>{{hero.id}}</div>
 <div>
 <label>name: </label>
 <input [(ngModel)]="hero.name" placeholder="name" />
 </div>
 <button (click)="goBack()">Back</button>
</div>
We update the component metadata with a templateUrl pointing to the template file that we just created.

app/hero-detail.component.ts (templateUrl)
templateUrl: 'app/hero-detail.component.html',
Refresh the browser and see the results.

Select a Dashboard Hero

When a user selects a hero in the dashboard, the app should navigate to the HeroDetailComponent to view and edit the selected hero.

In the dashboard template we bound each hero's click event to the gotoDetail method, passing along the selected hero entity.

app/dashboard.component.html (click)
<div *ngFor="let hero of heroes" (click)="gotoDetail(hero)" class="col-1-4">
We stubbed the gotoDetail method when we rewrote the DashboardComponent.
Now we give it a real implementation.

app/dashboard.component.ts (gotoDetail)
gotoDetail(hero: Hero): void {
 let link = ['/detail', hero.id];
 this.router.navigate(link);
}
The gotoDetail method navigates in two steps:

	Set a route link parameters array

	Pass the array to the router's navigate method

For navigation, we wrote router links as link
parameters arrays in the AppComponent
template. Those link parameters
arrays had only one element, the path of the
destination route.

This link parameters array has two elements, the path of
the destination route and a route parameter with
an id field set to the value of the selected hero's id.

The two array items align with the path and :id
token in the parameterized hero detail route definition we added to
app.routing.ts earlier in the chapter:

app/app.routing.ts (hero detail)
{
 path: 'detail/:id',
 component: HeroDetailComponent
},
The DashboardComponent doesn't have the router yet. We obtain it in the usual way:
import the router reference and inject it in the constructor (along with the HeroService):

import { Router } from '@angular/router';
constructor(
 private router: Router,
 private heroService: HeroService) {
}
Refresh the browser and select a hero from the dashboard; the app should navigate directly to that hero’s details.

Select a Hero in the HeroesComponent

We'll do something similar in the HeroesComponent.

That component's current template exhibits a "master/detail" style with the list of heroes
at the top and details of the selected hero below.

app/heroes.component.ts (current template)
template: `
 <h1>{{title}}</h1>
 <h2>My Heroes</h2>
 <ul class="heroes">
 <li *ngFor="let hero of heroes"
 [class.selected]="hero === selectedHero"
 (click)="onSelect(hero)">
 {{hero.id}} {{hero.name}}

 <my-hero-detail [hero]="selectedHero"></my-hero-detail>
`,
Delete the last line of the template with the <my-hero-detail> tags.

We'll no longer show the full HeroDetailComponent here.
We're going to display the hero detail on its own page and route to it as we did in the dashboard.

But we'll throw in a small twist for variety.
When the user selects a hero from the list, we won't go to the detail page.
We'll show a mini-detail on this page instead and make the user click a button to navigate to the full detail page.

Add the mini-detail

Add the following HTML fragment at the bottom of the template where the <my-hero-detail> used to be:

<div *ngIf="selectedHero">
 <h2>
 {{selectedHero.name | uppercase}} is my hero
 </h2>
 <button (click)="gotoDetail()">View Details</button>
</div>
After clicking a hero, the user should see something like this below the hero list:

[image: Mini Hero Detail]Format with the uppercase pipe

Notice that the hero's name is displayed in CAPITAL LETTERS. That's the effect of the uppercase pipe
that we slipped into the interpolation binding. Look for it right after the pipe operator (|).

{{selectedHero.name | uppercase}} is my hero
Pipes are a good way to format strings, currency amounts, dates and other display data.
Angular ships with several pipes and we can write our own.

Learn about pipes in the Pipes chapter.

Move content out of the component file

We are not done. We still have to update the component class to support navigation to the
HeroDetailComponent when the user clicks the View Details button.

This component file is really big. Most of it is either template or CSS styles.
It's difficult to find the component logic amidst the noise of HTML and CSS.

Let's migrate the template and the styles to their own files before we make any more changes:

	Cut-and-paste the template contents into a new heroes.component.html file.

	Cut-and-paste the styles contents into a new heroes.component.css file.

	Set the component metadata's templateUrl and styleUrls properties to refer to both files.

The styleUrls property is an array of style file names (with paths).
We could list multiple style files from different locations if we needed them.
As with templateUrl, we must specify the path all the way
back to the application root.

app/heroes.component.ts (revised metadata)
@Component({
 selector: 'my-heroes',
 templateUrl: 'app/heroes.component.html',
 styleUrls: ['app/heroes.component.css']
})
Now we can see what's going on as we update the component class along the same lines as the dashboard:

	Import the router

	Inject the router in the constructor (along with the HeroService)

	Implement the gotoDetail method by calling the router.navigate method

with a two-part hero-detail link parameters array.

Here's the revised component class:

app/heroes.component.ts (class)
export class HeroesComponent implements OnInit {
 heroes: Hero[];
 selectedHero: Hero;

 constructor(
 private router: Router,
 private heroService: HeroService) { }

 getHeroes(): void {
 this.heroService.getHeroes().then(heroes => this.heroes = heroes);
 }

 ngOnInit(): void {
 this.getHeroes();
 }

 onSelect(hero: Hero): void {
 this.selectedHero = hero;
 }

 gotoDetail(): void {
 this.router.navigate(['/detail', this.selectedHero.id]);
 }
}
Refresh the browser and start clicking.
We can navigate around the app, from the dashboard to hero details and back,
for heroes list to the mini-detail to the hero details and back to the heroes again.
We can jump back and forth between the dashboard and the heroes.

We've met all of the navigational requirements that propelled this chapter.

Styling the App

The app is functional but pretty ugly.
Our creative designer team provided some CSS files to make it look better.

A Dashboard with Style

The designers think we should display the dashboard heroes in a row of rectangles.
They've given us ~60 lines of CSS for this purpose including some simple media queries for responsive design.

If we paste these ~60 lines into the component styles metadata,
they'll completely obscure the component logic.
Let's not do that. It's easier to edit CSS in a separate *.css file anyway.

Add a dashboard.component.css file to the app folder and reference
that file in the component metadata's styleUrls array property like this:

app/dashboard.component.ts (styleUrls)
styleUrls: ['app/dashboard.component.css']
Stylish Hero Details

The designers also gave us CSS styles specifically for the HeroDetailComponent.

Add a hero-detail.component.css to the app
folder and refer to that file inside
the styleUrls array as we did for DashboardComponent.
Let's also remove the hero property @Input decorator
and its import
while we are at it.

Here's the content for the aforementioned component CSS files.

label {
 display: inline-block;
 width: 3em;
 margin: .5em 0;
 color: #607D8B;
 font-weight: bold;
}
input {
 height: 2em;
 font-size: 1em;
 padding-left: .4em;
}
button {
 margin-top: 20px;
 font-family: Arial;
 background-color: #eee;
 border: none;
 padding: 5px 10px;
 border-radius: 4px;
 cursor: pointer; cursor: hand;
}
button:hover {
 background-color: #cfd8dc;
}
button:disabled {
 background-color: #eee;
 color: #ccc;
 cursor: auto;
}
[class*='col-'] {
 float: left;
}
*, *:after, *:before {
 -webkit-box-sizing: border-box;
 -moz-box-sizing: border-box;
 box-sizing: border-box;
}
h3 {
 text-align: center; margin-bottom: 0;
}
[class*='col-'] {
 padding-right: 20px;
 padding-bottom: 20px;
}
[class*='col-']:last-of-type {
 padding-right: 0;
}
.grid {
 margin: 0;
}
.col-1-4 {
 width: 25%;
}
.module {
 padding: 20px;
 text-align: center;
 color: #eee;
 max-height: 120px;
 min-width: 120px;
 background-color: #607D8B;
 border-radius: 2px;
}
h4 {
 position: relative;
}
.module:hover {
 background-color: #EEE;
 cursor: pointer;
 color: #607d8b;
}
.grid-pad {
 padding: 10px 0;
}
.grid-pad > [class*='col-']:last-of-type {
 padding-right: 20px;
}
@media (max-width: 600px) {
 .module {
 font-size: 10px;
 max-height: 75px; }
}
@media (max-width: 1024px) {
 .grid {
 margin: 0;
 }
 .module {
 min-width: 60px;
 }
}

The designers gave us CSS to make the navigation links in our AppComponent look more like selectable buttons.
We cooperated by surrounding those links in <nav> tags.

Add a app.component.css file to the app folder with the following content.

app/app.component.css (navigation styles)
h1 {
 font-size: 1.2em;
 color: #999;
 margin-bottom: 0;
}
h2 {
 font-size: 2em;
 margin-top: 0;
 padding-top: 0;
}
nav a {
 padding: 5px 10px;
 text-decoration: none;
 margin-top: 10px;
 display: inline-block;
 background-color: #eee;
 border-radius: 4px;
}
nav a:visited, a:link {
 color: #607D8B;
}
nav a:hover {
 color: #039be5;
 background-color: #CFD8DC;
}
nav a.active {
 color: #039be5;
}
The routerLinkActive directive

The Angular Router provides a routerLinkActive directive we can use to
add a class to the HTML navigation element whose route matches the active route.
All we have to do is define the style for it. Sweet!

app/app.component.ts (active router links)
template: `
 <h1>{{title}}</h1>
 <nav>
 Dashboard
 Heroes
 </nav>
 <router-outlet></router-outlet>
`,

Set the AppComponent’s styleUrls property to this CSS file.

app/app.component.ts (styleUrls)
styleUrls: ['app/app.component.css'],
Global application styles

When we add styles to a component, we're keeping everything a component needs
— HTML, the CSS, the code — together in one convenient place.
It's pretty easy to package it all up and re-use the component somewhere else.

We can also create styles at the application level outside of any component.

Our designers provided some basic styles to apply to elements across the entire app.
These correspond to the full set of master styles that we
introduced earlier (see
QuickStart, "Add some style").
Here is an excerpt:

styles.css (excerpt)
/* Master Styles */
h1 {
 color: #369;
 font-family: Arial, Helvetica, sans-serif;
 font-size: 250%;
}
h2, h3 {
 color: #444;
 font-family: Arial, Helvetica, sans-serif;
 font-weight: lighter;
}
body {
 margin: 2em;
}
body, input[text], button {
 color: #888;
 font-family: Cambria, Georgia;
}
/* . . . */
/* everywhere else */
* {
 font-family: Arial, Helvetica, sans-serif;
}
Create the file styles.css, if it doesn't exist already.
Ensure that it contains the master styles given here.

If necessary, also edit index.html to refer to this stylesheet.

index.html (link ref)
<link rel="stylesheet" href="styles.css">
Look at the app now. Our dashboard, heroes, and navigation links are styling!

[image: View navigations]Application structure and code

Review the sample source code in the for this chapter.
Verify that we have the following structure:

angular2-tour-of-heroes
app
app.component.css
app.component.ts
app.module.ts
app.routing.ts
dashboard.component.css
dashboard.component.html
dashboard.component.ts
hero.service.ts
hero.ts
hero-detail.component.css
hero-detail.component.html
hero-detail.component.ts
heroes.component.css
heroes.component.html
heroes.component.ts
main.ts
mock-heroes.ts

node_modules ...
typings ...
index.html
package.json
styles.css
systemjs.config.js
tsconfig.json
typings.json

Recap

The Road Behind

We travelled a great distance in this chapter

	We added the Angular Component Router to navigate among different components.

	We learned how to create router links to represent navigation menu items.

	We used router link parameters to navigate to the details of user selected hero.

	We shared the HeroService among multiple components.

	We moved HTML and CSS out of the component file and into their own files.

	We added the uppercase pipe to format data.

The Road Ahead

We have much of the foundation we need to build an application.
We're still missing a key piece: remote data access.

In the next chapter,
we’ll replace our mock data with data retrieved from a server using http.

7. HTTP
Getting and Saving Data

Our stakeholders appreciate our progress.
Now they want to get the hero data from a server, let users add, edit, and delete heroes,
and save these changes back to the server.

In this chapter we teach our application to make the corresponding HTTP calls to a remote server's web API.

Run the for this part.

Where We Left Off

In the previous chapter, we learned to navigate between the dashboard and the fixed heroes list, editing a selected hero along the way.
That's our starting point for this chapter.

Keep the app transpiling and running

Open a terminal/console window and enter the following command to
start the TypeScript compiler, start the server, and watch for changes:

npm start
The application runs and updates automatically as we continue to build the Tour of Heroes.

Providing HTTP Services
The HttpModule is not a core Angular module.
It's Angular's optional approach to web access and it exists as a separate add-on module called @angular/http,
shipped in a separate script file as part of the Angular npm package.

Fortunately we're ready to import from @angular/http because systemjs.config configured SystemJS to load that library when we need it.

Register for HTTP services

Our app will depend upon the Angular http service which itself depends upon other supporting services.
The HttpModule from @angular/http library holds providers for a complete set of HTTP services.

We should be able to access these services from anywhere in the application.
So we register them all by adding HttpModule to the imports list of the AppModule where we
bootstrap the application and its root AppComponent.

app/app.module.ts (v1)
import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';
import { FormsModule } from '@angular/forms';
import { HttpModule } from '@angular/http';

import { AppComponent } from './app.component';
import { DashboardComponent } from './dashboard.component';
import { HeroesComponent } from './heroes.component';
import { HeroDetailComponent } from './hero-detail.component';
import { HeroService } from './hero.service';
import { routing } from './app.routing';

@NgModule({
 imports: [
 BrowserModule,
 FormsModule,
 HttpModule,
 routing
],
 declarations: [
 AppComponent,
 DashboardComponent,
 HeroDetailComponent,
 HeroesComponent,
],
 providers: [
 HeroService,
],
 bootstrap: [AppComponent]
})
export class AppModule {
}
Notice that we supply HttpModule as part of the imports array in root NgModule AppModule.

Simulating the web API

We recommend registering application-wide services in the root
AppModule providers. Here we're
registering in main for a special reason.

Our application is in the early stages of development and far from ready for production.
We don't even have a web server that can handle requests for heroes.
Until we do, we'll have to fake it.

We're going to trick the HTTP client into fetching and saving data from
a mock service, the in-memory web API.
 The application itself doesn't need to know and
shouldn't know about this. So we'll slip the in-memory web API into the
configuration above the AppComponent.

Here is a version of app/app.module.ts that performs this trick:

app/app.module.ts (v2)
import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';
import { FormsModule } from '@angular/forms';
import { HttpModule } from '@angular/http';

// Imports for loading & configuring the in-memory web api
import { InMemoryWebApiModule } from 'angular2-in-memory-web-api';
import { InMemoryDataService } from './in-memory-data.service';

import { AppComponent } from './app.component';
import { DashboardComponent } from './dashboard.component';
import { HeroesComponent } from './heroes.component';
import { HeroDetailComponent } from './hero-detail.component';
import { HeroService } from './hero.service';
import { routing } from './app.routing';

@NgModule({
 imports: [
 BrowserModule,
 FormsModule,
 HttpModule,
 InMemoryWebApiModule.forRoot(InMemoryDataService),
 routing
],
 declarations: [
 AppComponent,
 DashboardComponent,
 HeroDetailComponent,
 HeroesComponent,
],
 providers: [
 HeroService,
],
 bootstrap: [AppComponent]
})
export class AppModule {
}
We're importing the InMemoryWebApiModule and adding it to the module imports.
The InMemoryWebApiModule replaces the default Http client backend —
the supporting service that talks to the remote server —
with an in-memory web API alternative service.

InMemoryWebApiModule.forRoot(InMemoryDataService),
The forRoot configuration method takes an InMemoryDataService class
that primes the in-memory database as follows:

app/in-memory-data.service.ts
import { InMemoryDbService } from 'angular2-in-memory-web-api';
export class InMemoryDataService implements InMemoryDbService {
 createDb() {
 let heroes = [
 {id: 11, name: 'Mr. Nice'},
 {id: 12, name: 'Narco'},
 {id: 13, name: 'Bombasto'},
 {id: 14, name: 'Celeritas'},
 {id: 15, name: 'Magneta'},
 {id: 16, name: 'RubberMan'},
 {id: 17, name: 'Dynama'},
 {id: 18, name: 'Dr IQ'},
 {id: 19, name: 'Magma'},
 {id: 20, name: 'Tornado'}
];
 return {heroes};
 }
}
This file replaces the mock-heroes.ts which is now safe to delete.
This chapter is an introduction to the Angular HTTP library.
Please don't be distracted by the details of this backend substitution. Just follow along with the example.

Learn more later about the in-memory web API in the HTTP client chapter.
Remember, the in-memory web API is only useful in the early stages of development and for demonstrations such as this Tour of Heroes.
Skip it when you have a real web API server.

Heroes and HTTP

Look at our current HeroService implementation

getHeroes(): Promise<Hero[]> {
 return Promise.resolve(HEROES);
}
We returned a Promise resolved with mock heroes.
It may have seemed like overkill at the time, but we were anticipating the
day when we fetched heroes with an HTTP client and we knew that would have to be an asynchronous operation.

That day has arrived! Let's convert getHeroes() to use HTTP.

app/hero.service.ts (updated getHeroes and new class members)
 private heroesUrl = 'app/heroes'; // URL to web api

 constructor(private http: Http) { }

 getHeroes(): Promise<Hero[]> {
 return this.http.get(this.heroesUrl)
 .toPromise()
 .then(response => response.json().data as Hero[])
 .catch(this.handleError);
 }
Our updated import statements are now:

app/hero.service.ts (updated imports)
import { Injectable } from '@angular/core';
import { Headers, Http } from '@angular/http';

import 'rxjs/add/operator/toPromise';

import { Hero } from './hero';
Refresh the browser, and the hero data should be successfully loaded from the
mock server.

HTTP Promise

We're still returning a Promise but we're creating it differently.

The Angular http.get returns an RxJS Observable.
Observables are a powerful way to manage asynchronous data flows.
We'll learn about Observables later in this chapter.

For now we get back on familiar ground by immediately by
converting that Observable to a Promise using the toPromise operator.

.toPromise()
Unfortunately, the Angular Observable doesn't have a toPromise operator ...
not out of the box.
The Angular Observable is a bare-bones implementation.

There are scores of operators like toPromise that extend Observable with useful capabilities.
If we want those capabilities, we have to add the operators ourselves.
That's as easy as importing them from the RxJS library like this:

import 'rxjs/add/operator/toPromise';
Extracting the data in the then callback

In the promise's then callback we call the json method of the HTTP Response to extract the
data within the response.

.then(response => response.json().data as Hero[])
That response JSON has a single data property.
The data property holds the array of heroes that the caller really wants.
So we grab that array and return it as the resolved Promise value.

Pay close attention to the shape of the data returned by the server.
This particular in-memory web API example happens to return an object with a data property.
Your API might return something else. Adjust the code to match your web API.

The caller is unaware of these machinations. It receives a Promise of heroes just as it did before.
It has no idea that we fetched the heroes from the (mock) server.
It knows nothing of the twists and turns required to convert the HTTP response into heroes.
Such is the beauty and purpose of delegating data access to a service like this HeroService.

Error Handling

At the end of getHeroes() we catch server failures and pass them to an error handler:

.catch(this.handleError);
This is a critical step!
We must anticipate HTTP failures as they happen frequently for reasons beyond our control.

private handleError(error: any): Promise<any> {
 console.error('An error occurred', error); // for demo purposes only
 return Promise.reject(error.message || error);
}
In this demo service we log the error to the console; we would do better in real life.

We've also decided to return a user friendly form of the error to
the caller in a rejected promise so that the caller can display a proper error message to the user.

Unchanged getHeroes API

Although we made significant internal changes to getHeroes(), the public signature did not change.
We still return a Promise. We won't have to update any of the components that call getHeroes().

Our stakeholders are thrilled with the added flexibility from the API integration.
Now they want the ability to create and delete heroes.

Let's see first what happens when we try to update a hero's details.

Update hero details

We can edit a hero's name already in the hero detail view. Go ahead and try
it. As we type, the hero name is updated in the view heading.
But when we hit the Back button, the changes are lost!

Updates weren't lost before, what's happening?
When the app used a list of mock heroes, changes were made directly to the
hero objects in the single, app-wide shared list. Now that we are fetching data
from a server, if we want changes to persist, we'll need to write them back to
the server.

Save hero details

Let's ensure that edits to a hero's name aren't lost. Start by adding,
to the end of the hero detail template, a save button with a click event
binding that invokes a new component method named save:

app/hero-detail.component.html (save)
<button (click)="save()">Save</button>
The save method persists hero name changes using the hero service
update method and then navigates back to the previous view:

app/hero-detail.component.ts (save)
save(): void {
 this.heroService.update(this.hero)
 .then(this.goBack);
}
Hero service update method

The overall structure of the update method is similar to that of
getHeroes, although we'll use an HTTP put to persist changes
server-side:

app/hero.service.ts (update)
private headers = new Headers({'Content-Type': 'application/json'});

update(hero: Hero): Promise<Hero> {
 const url = `${this.heroesUrl}/${hero.id}`;
 return this.http
 .put(url, JSON.stringify(hero), {headers: this.headers})
 .toPromise()
 .then(() => hero)
 .catch(this.handleError);
}
We identify which hero the server should update by encoding the hero id in
the URL. The put body is the JSON string encoding of the hero, obtained by
calling JSON.stringify. We identify the body content type
(application/json) in the request header.

Refresh the browser and give it a try. Changes to hero names should now persist.

Add a hero

To add a new hero we need to know the hero's name. Let's use an input
element for that, paired with an add button.

Insert the following into the heroes component HTML, first thing after
the heading:

app/heroes.component.html (add)
<div>
 <label>Hero name:</label> <input #heroName />
 <button (click)="add(heroName.value); heroName.value=''">
 Add
 </button>
</div>
In response to a click event, we call the component's click handler and then
clear the input field so that it will be ready to use for another name.

app/heroes.component.ts (add)
add(name: string): void {
 name = name.trim();
 if (!name) { return; }
 this.heroService.create(name)
 .then(hero => {
 this.heroes.push(hero);
 this.selectedHero = null;
 });
}
When the given name is non-blank, the handler delegates creation of the
named hero to the hero service, and then adds the new hero to our array.

Go ahead, refresh the browser and create some new heroes!

Delete a hero

Too many heroes?
Let's add a delete button to each hero in the heroes view.

Add this button element to the heroes component HTML, right after the hero
name in the repeated tag:

<button class="delete"
 (click)="delete(hero); $event.stopPropagation()">x</button>
The element should now look like this:

app/heroes.component.html (li-element)
 <li *ngFor="let hero of heroes" (click)="onSelect(hero)"
 [class.selected]="hero === selectedHero">
 {{hero.id}}
 {{hero.name}}
 <button class="delete"
 (click)="delete(hero); $event.stopPropagation()">x</button>

In addition to calling the component's delete method, the delete button
click handling code stops the propagation of the click event — we
don't want the click handler to be triggered because that would
select the hero that we are going to delete!

The logic of the delete handler is a bit trickier:

app/heroes.component.ts (delete)
delete(hero: Hero): void {
 this.heroService
 .delete(hero.id)
 .then(() => {
 this.heroes = this.heroes.filter(h => h !== hero);
 if (this.selectedHero === hero) { this.selectedHero = null; }
 });
}
Of course, we delegate hero deletion to the hero service, but the component
is still responsible for updating the display: it removes the deleted hero
from the array and resets the selected hero if necessary.

We want our delete button to be placed at the far right of the hero entry.
This extra CSS accomplishes that:

app/heroes.component.css (additions)
button.delete {
 float:right;
 margin-top: 2px;
 margin-right: .8em;
 background-color: gray !important;
 color:white;
}
Hero service delete method

The hero service's delete method uses the delete HTTP method to remove the hero from the server:

app/hero.service.ts (delete)
delete(id: number): Promise<void> {
 let url = `${this.heroesUrl}/${id}`;
 return this.http.delete(url, {headers: this.headers})
 .toPromise()
 .then(() => null)
 .catch(this.handleError);
}
Refresh the browser and try the new delete functionality.

Observables

Each Http service method returns an Observable of HTTP Response objects.

Our HeroService converts that Observable into a Promise and returns the promise to the caller.
In this section we learn to return the Observable directly and discuss when and why that might be
a good thing to do.

Background

An observable is a stream of events that we can process with array-like operators.

Angular core has basic support for observables. We developers augment that support with
operators and extensions from the RxJS Observables library.
We'll see how shortly.

Recall that our HeroService quickly chained the toPromise operator to the Observable result of http.get.
That operator converted the Observable into a Promise and we passed that promise back to the caller.

Converting to a promise is often a good choice. We typically ask http.get to fetch a single chunk of data.
When we receive the data, we're done.
A single result in the form of a promise is easy for the calling component to consume
and it helps that promises are widely understood by JavaScript programmers.

But requests aren't always "one and done". We may start one request,
then cancel it, and make a different request before the server has responded to the first request.
Such a request-cancel-new-request sequence is difficult to implement with Promises.
It's easy with Observables as we'll see.

Search-by-name

We're going to add a hero search feature to the Tour of Heroes.
As the user types a name into a search box, we'll make repeated HTTP requests for heroes filtered by that name.

We start by creating HeroSearchService that sends search queries to our server's web api.

app/hero-search.service.ts
import { Injectable } from '@angular/core';
import { Http, Response } from '@angular/http';
import { Observable } from 'rxjs';

import { Hero } from './hero';

@Injectable()
export class HeroSearchService {

 constructor(private http: Http) {}

 search(term: string): Observable<Hero[]> {
 return this.http
 .get(`app/heroes/?name=${term}`)
 .map((r: Response) => r.json().data as Hero[]);
 }
}
The http.get() call in HeroSearchService is similar to the one
in the HeroService, although the URL now has a query string.
Another notable difference: we no longer call toPromise,
we simply return the observable instead.

HeroSearchComponent

Let's create a new HeroSearchComponent that calls this new HeroSearchService.

The component template is simple — just a text box and a list of matching search results.

app/hero-search.component.html
<div id="search-component">
 <h4>Hero Search</h4>
 <input #searchBox id="search-box" (keyup)="search(searchBox.value)" />
 <div>
 <div *ngFor="let hero of heroes | async"
 (click)="gotoDetail(hero)" class="search-result" >
 {{hero.name}}
 </div>
 </div>
</div>
We'll also want to add styles for the new component.

app/hero-search.component.css
.search-result{
 border-bottom: 1px solid gray;
 border-left: 1px solid gray;
 border-right: 1px solid gray;
 width:195px;
 height: 20px;
 padding: 5px;
 background-color: white;
 cursor: pointer;
}

#search-box{
 width: 200px;
 height: 20px;
}
As the user types in the search box, a keyup event binding calls the component's search method with the new search box value.

The *ngFor repeats hero objects from the component's heroes property. No surprise there.

But, as we'll soon see, the heroes property is now an Observable of hero arrays, rather than just a hero array.
The *ngFor can't do anything with an Observable until we flow it through the async pipe (AsyncPipe).
The async pipe subscribes to the Observable and produces the array of heroes to *ngFor.

Time to create the HeroSearchComponent class and metadata.

app/hero-search.component.ts
import { Component, OnInit } from '@angular/core';
import { Router } from '@angular/router';
import { Observable } from 'rxjs/Observable';
import { Subject } from 'rxjs/Subject';

import { HeroSearchService } from './hero-search.service';
import { Hero } from './hero';

@Component({
 selector: 'hero-search',
 templateUrl: 'app/hero-search.component.html',
 styleUrls: ['app/hero-search.component.css'],
 providers: [HeroSearchService]
})
export class HeroSearchComponent implements OnInit {
 heroes: Observable<Hero[]>;
 private searchTerms = new Subject<string>();

 constructor(
 private heroSearchService: HeroSearchService,
 private router: Router) {}

 // Push a search term into the observable stream.
 search(term: string): void {
 this.searchTerms.next(term);
 }

 ngOnInit(): void {
 this.heroes = this.searchTerms
 .debounceTime(300) // wait for 300ms pause in events
 .distinctUntilChanged() // ignore if next search term is same as previous
 .switchMap(term => term // switch to new observable each time
 // return the http search observable
 ? this.heroSearchService.search(term)
 // or the observable of empty heroes if no search term
 : Observable.of<Hero[]>([]))
 .catch(error => {
 // TODO: real error handling
 console.log(error);
 return Observable.of<Hero[]>([]);
 });
 }

 gotoDetail(hero: Hero): void {
 let link = ['/detail', hero.id];
 this.router.navigate(link);
 }
}
Search terms

Let's focus on the searchTerms:

private searchTerms = new Subject<string>();

// Push a search term into the observable stream.
search(term: string): void {
 this.searchTerms.next(term);
}
A Subject is a producer of an observable event stream;
searchTerms produces an Observable of strings, the filter criteria for the name search.

Each call to search puts a new string into this subject's observable stream by calling next.

Initialize the heroes property (ngOnInit)

A Subject is also an Observable.
We're going to turn the stream
of search terms into a stream of Hero arrays and assign the result to the heroes property.

heroes: Observable<Hero[]>;

ngOnInit(): void {
 this.heroes = this.searchTerms
 .debounceTime(300) // wait for 300ms pause in events
 .distinctUntilChanged() // ignore if next search term is same as previous
 .switchMap(term => term // switch to new observable each time
 // return the http search observable
 ? this.heroSearchService.search(term)
 // or the observable of empty heroes if no search term
 : Observable.of<Hero[]>([]))
 .catch(error => {
 // TODO: real error handling
 console.log(error);
 return Observable.of<Hero[]>([]);
 });
}
If we passed every user keystroke directly to the HeroSearchService, we'd unleash a storm of HTTP requests.
Bad idea. We don't want to tax our server resources and burn through our cellular network data plan.

Fortunately, we can chain Observable operators to the string Observable that reduce the request flow.
We'll make fewer calls to the HeroSearchService and still get timely results. Here's how:

	debounceTime(300) waits until the flow of new string events pauses for 300 milliseconds
before passing along the latest string. We'll never make requests more frequently than 300ms.

	distinctUntilChanged ensures that we only send a request if the filter text changed.
There's no point in repeating a request for the same search term.

	switchMap calls our search service for each search term that makes it through the debounce and distinctUntilChanged gauntlet.
It cancels and discards previous search observables, returning only the latest search service observable.

The switchMap operator
(formerly known as "flatMapLatest") is very clever.

Every qualifying key event can trigger an http method call.
Even with a 300ms pause between requests, we could have multiple HTTP requests in flight
and they may not return in the order sent.

switchMap preserves the original request order while returning
 only the observable from the most recent http method call.
Results from prior calls are canceled and discarded.

We also short-circuit the http method call and return an observable containing an empty array
if the search text is empty.

Note that canceling the HeroSearchService observable won't actually abort a pending HTTP request
until the service supports that feature, a topic for another day.
We are content for now to discard unwanted results.

	catch intercepts a failed observable.
Our simple example prints the error to the console; a real life application should do better.
Then we return an observable containing an empty array to clear the search result.

Import RxJS operators

The RxJS operators are not available in Angular's base Observable implementation.
We have to extend Observable by importing them.

We could extend Observable with just the operators we need here by
including the pertinent import statements at the top of this file.

Many authorities say we should do just that.

We take a different approach in this example.
We combine all of the RxJS Observable extensions that our entire app requires into a single RxJS imports file.

app/rxjs-extensions.ts
// Observable class extensions
import 'rxjs/add/observable/of';
import 'rxjs/add/observable/throw';

// Observable operators
import 'rxjs/add/operator/catch';
import 'rxjs/add/operator/debounceTime';
import 'rxjs/add/operator/distinctUntilChanged';
import 'rxjs/add/operator/do';
import 'rxjs/add/operator/filter';
import 'rxjs/add/operator/map';
import 'rxjs/add/operator/switchMap';
We load them all at once by importing rxjs-extensions at the top of AppModule.

app/app.module.ts (rxjs-extensions)
import './rxjs-extensions';
Add the search component to the dashboard

We add the hero search HTML element to the bottom of the DashboardComponent template.

app/dashboard.component.html
<h3>Top Heroes</h3>
<div class="grid grid-pad">
 <div *ngFor="let hero of heroes" (click)="gotoDetail(hero)" class="col-1-4">
 <div class="module hero">
 <h4>{{hero.name}}</h4>
 </div>
 </div>
</div>
<hero-search></hero-search>
Finally, we import HeroSearchComponent from
hero-search.component.ts
and add it to the declarations array:

app/app.module.ts (search)
 declarations: [
 AppComponent,
 DashboardComponent,
 HeroDetailComponent,
 HeroesComponent,
 HeroSearchComponent
],
Run the app again, go to the Dashboard, and enter some text in the search box.
At some point it might look like this.

[image: Hero Search Component]Application structure and code

Review the sample source code in the for this chapter.
Verify that we have the following structure:

angular2-tour-of-heroes
app
app.component.ts
app.component.css
app.module.ts
app.routing.ts
dashboard.component.css
dashboard.component.html
dashboard.component.ts
hero.ts
hero-detail.component.css
hero-detail.component.html
hero-detail.component.ts
hero-search.component.html (new)
hero-search.component.css (new)
hero-search.component.ts (new)
hero-search.service.ts (new)
rxjs-extensions.ts
hero.service.ts
heroes.component.css
heroes.component.html
heroes.component.ts
main.ts
in-memory-data.service.ts (new)

node_modules ...
typings ...
index.html
package.json
styles.css
systemjs.config.js
tsconfig.json
typings.json

Home Stretch

We are at the end of our journey for now, but we have accomplished a lot.

	We added the necessary dependencies to use HTTP in our application.

	We refactored HeroService to load heroes from a web API.

	We extended HeroService to support post, put and delete methods.

	We updated our components to allow adding, editing and deleting of heroes.

	We configured an in-memory web API.

	We learned how to use Observables.

Here are the files we added or changed in this chapter.

import { Component } from '@angular/core';

@Component({
 selector: 'my-app',

 template: `
 <h1>{{title}}</h1>
 <nav>
 Dashboard
 Heroes
 </nav>
 <router-outlet></router-outlet>
 `,
 styleUrls: ['app/app.component.css']
})
export class AppComponent {
 title = 'Tour of Heroes';
}
import './rxjs-extensions';

import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';
import { FormsModule } from '@angular/forms';
import { HttpModule } from '@angular/http';

// Imports for loading & configuring the in-memory web api
import { InMemoryWebApiModule } from 'angular2-in-memory-web-api';
import { InMemoryDataService } from './in-memory-data.service';

import { AppComponent } from './app.component';
import { DashboardComponent } from './dashboard.component';
import { HeroesComponent } from './heroes.component';
import { HeroDetailComponent } from './hero-detail.component';
import { HeroService } from './hero.service';
import { HeroSearchComponent } from './hero-search.component';
import { routing } from './app.routing';

@NgModule({
 imports: [
 BrowserModule,
 FormsModule,
 HttpModule,
 InMemoryWebApiModule.forRoot(InMemoryDataService),
 routing
],
 declarations: [
 AppComponent,
 DashboardComponent,
 HeroDetailComponent,
 HeroesComponent,
 HeroSearchComponent
],
 providers: [
 HeroService,
],
 bootstrap: [AppComponent]
})
export class AppModule {
}
import { Component, OnInit } from '@angular/core';
import { Router } from '@angular/router';

import { Hero } from './hero';
import { HeroService } from './hero.service';

@Component({
 selector: 'my-heroes',
 templateUrl: 'app/heroes.component.html',
 styleUrls: ['app/heroes.component.css']
})
export class HeroesComponent implements OnInit {
 heroes: Hero[];
 selectedHero: Hero;

 constructor(
 private heroService: HeroService,
 private router: Router) { }

 getHeroes(): void {
 this.heroService
 .getHeroes()
 .then(heroes => this.heroes = heroes);
 }

 add(name: string): void {
 name = name.trim();
 if (!name) { return; }
 this.heroService.create(name)
 .then(hero => {
 this.heroes.push(hero);
 this.selectedHero = null;
 });
 }

 delete(hero: Hero): void {
 this.heroService
 .delete(hero.id)
 .then(() => {
 this.heroes = this.heroes.filter(h => h !== hero);
 if (this.selectedHero === hero) { this.selectedHero = null; }
 });
 }

 ngOnInit(): void {
 this.getHeroes();
 }

 onSelect(hero: Hero): void {
 this.selectedHero = hero;
 }

 gotoDetail(): void {
 this.router.navigate(['/detail', this.selectedHero.id]);
 }
}
<h2>My Heroes</h2>
<div>
 <label>Hero name:</label> <input #heroName />
 <button (click)="add(heroName.value); heroName.value=''">
 Add
 </button>
</div>
<ul class="heroes">
 <li *ngFor="let hero of heroes" (click)="onSelect(hero)"
 [class.selected]="hero === selectedHero">
 {{hero.id}}
 {{hero.name}}
 <button class="delete"
 (click)="delete(hero); $event.stopPropagation()">x</button>

<div *ngIf="selectedHero">
 <h2>
 {{selectedHero.name | uppercase}} is my hero
 </h2>
 <button (click)="gotoDetail()">View Details</button>
</div>
.selected {
 background-color: #CFD8DC !important;
 color: white;
}
.heroes {
 margin: 0 0 2em 0;
 list-style-type: none;
 padding: 0;
 width: 15em;
}
.heroes li {
 cursor: pointer;
 position: relative;
 left: 0;
 background-color: #EEE;
 margin: .5em;
 padding: .3em 0;
 height: 1.6em;
 border-radius: 4px;
}
.heroes li:hover {
 color: #607D8B;
 background-color: #DDD;
 left: .1em;
}
.heroes li.selected:hover {
 background-color: #BBD8DC !important;
 color: white;
}
.heroes .text {
 position: relative;
 top: -3px;
}
.heroes .badge {
 display: inline-block;
 font-size: small;
 color: white;
 padding: 0.8em 0.7em 0 0.7em;
 background-color: #607D8B;
 line-height: 1em;
 position: relative;
 left: -1px;
 top: -4px;
 height: 1.8em;
 margin-right: .8em;
 border-radius: 4px 0 0 4px;
}
button {
 font-family: Arial;
 background-color: #eee;
 border: none;
 padding: 5px 10px;
 border-radius: 4px;
 cursor: pointer;
 cursor: hand;
}
button:hover {
 background-color: #cfd8dc;
}
button.delete {
 float:right;
 margin-top: 2px;
 margin-right: .8em;
 background-color: gray !important;
 color:white;
}
import { Component, OnInit } from '@angular/core';
import { ActivatedRoute, Params } from '@angular/router';

import { Hero } from './hero';
import { HeroService } from './hero.service';

@Component({
 selector: 'my-hero-detail',
 templateUrl: 'app/hero-detail.component.html',
 styleUrls: ['app/hero-detail.component.css']
})
export class HeroDetailComponent implements OnInit {
 hero: Hero;

 constructor(
 private heroService: HeroService,
 private route: ActivatedRoute) {
 }

 ngOnInit(): void {
 this.route.params.forEach((params: Params) => {
 let id = +params['id'];
 this.heroService.getHero(id)
 .then(hero => this.hero = hero);
 });
 }

 save(): void {
 this.heroService.update(this.hero)
 .then(this.goBack);
 }

 goBack(): void {
 window.history.back();
 }
}
<div *ngIf="hero">
 <h2>{{hero.name}} details!</h2>
 <div>
 <label>id: </label>{{hero.id}}</div>
 <div>
 <label>name: </label>
 <input [(ngModel)]="hero.name" placeholder="name" />
 </div>
 <button (click)="goBack()">Back</button>
 <button (click)="save()">Save</button>
</div>
import { Injectable } from '@angular/core';
import { Headers, Http } from '@angular/http';

import 'rxjs/add/operator/toPromise';

import { Hero } from './hero';

@Injectable()
export class HeroService {

 private headers = new Headers({'Content-Type': 'application/json'});
 private heroesUrl = 'app/heroes'; // URL to web api

 constructor(private http: Http) { }

 getHeroes(): Promise<Hero[]> {
 return this.http.get(this.heroesUrl)
 .toPromise()
 .then(response => response.json().data as Hero[])
 .catch(this.handleError);
 }

 getHero(id: number): Promise<Hero> {
 return this.getHeroes()
 .then(heroes => heroes.find(hero => hero.id === id));
 }

 delete(id: number): Promise<void> {
 let url = `${this.heroesUrl}/${id}`;
 return this.http.delete(url, {headers: this.headers})
 .toPromise()
 .then(() => null)
 .catch(this.handleError);
 }

 create(name: string): Promise<Hero> {
 return this.http
 .post(this.heroesUrl, JSON.stringify({name: name}), {headers: this.headers})
 .toPromise()
 .then(res => res.json().data)
 .catch(this.handleError);
 }

 update(hero: Hero): Promise<Hero> {
 const url = `${this.heroesUrl}/${hero.id}`;
 return this.http
 .put(url, JSON.stringify(hero), {headers: this.headers})
 .toPromise()
 .then(() => hero)
 .catch(this.handleError);
 }

 private handleError(error: any): Promise<any> {
 console.error('An error occurred', error); // for demo purposes only
 return Promise.reject(error.message || error);
 }
}
import { InMemoryDbService } from 'angular2-in-memory-web-api';
export class InMemoryDataService implements InMemoryDbService {
 createDb() {
 let heroes = [
 {id: 11, name: 'Mr. Nice'},
 {id: 12, name: 'Narco'},
 {id: 13, name: 'Bombasto'},
 {id: 14, name: 'Celeritas'},
 {id: 15, name: 'Magneta'},
 {id: 16, name: 'RubberMan'},
 {id: 17, name: 'Dynama'},
 {id: 18, name: 'Dr IQ'},
 {id: 19, name: 'Magma'},
 {id: 20, name: 'Tornado'}
];
 return {heroes};
 }
}
import { Injectable } from '@angular/core';
import { Http, Response } from '@angular/http';
import { Observable } from 'rxjs';

import { Hero } from './hero';

@Injectable()
export class HeroSearchService {

 constructor(private http: Http) {}

 search(term: string): Observable<Hero[]> {
 return this.http
 .get(`app/heroes/?name=${term}`)
 .map((r: Response) => r.json().data as Hero[]);
 }
}
import { Component, OnInit } from '@angular/core';
import { Router } from '@angular/router';
import { Observable } from 'rxjs/Observable';
import { Subject } from 'rxjs/Subject';

import { HeroSearchService } from './hero-search.service';
import { Hero } from './hero';

@Component({
 selector: 'hero-search',
 templateUrl: 'app/hero-search.component.html',
 styleUrls: ['app/hero-search.component.css'],
 providers: [HeroSearchService]
})
export class HeroSearchComponent implements OnInit {
 heroes: Observable<Hero[]>;
 private searchTerms = new Subject<string>();

 constructor(
 private heroSearchService: HeroSearchService,
 private router: Router) {}

 // Push a search term into the observable stream.
 search(term: string): void {
 this.searchTerms.next(term);
 }

 ngOnInit(): void {
 this.heroes = this.searchTerms
 .debounceTime(300) // wait for 300ms pause in events
 .distinctUntilChanged() // ignore if next search term is same as previous
 .switchMap(term => term // switch to new observable each time
 // return the http search observable
 ? this.heroSearchService.search(term)
 // or the observable of empty heroes if no search term
 : Observable.of<Hero[]>([]))
 .catch(error => {
 // TODO: real error handling
 console.log(error);
 return Observable.of<Hero[]>([]);
 });
 }

 gotoDetail(hero: Hero): void {
 let link = ['/detail', hero.id];
 this.router.navigate(link);
 }
}
<div id="search-component">
 <h4>Hero Search</h4>
 <input #searchBox id="search-box" (keyup)="search(searchBox.value)" />
 <div>
 <div *ngFor="let hero of heroes | async"
 (click)="gotoDetail(hero)" class="search-result" >
 {{hero.name}}
 </div>
 </div>
</div>
.search-result{
 border-bottom: 1px solid gray;
 border-left: 1px solid gray;
 border-right: 1px solid gray;
 width:195px;
 height: 20px;
 padding: 5px;
 background-color: white;
 cursor: pointer;
}

#search-box{
 width: 200px;
 height: 20px;
}
// Observable class extensions
import 'rxjs/add/observable/of';
import 'rxjs/add/observable/throw';

// Observable operators
import 'rxjs/add/operator/catch';
import 'rxjs/add/operator/debounceTime';
import 'rxjs/add/operator/distinctUntilChanged';
import 'rxjs/add/operator/do';
import 'rxjs/add/operator/filter';
import 'rxjs/add/operator/map';
import 'rxjs/add/operator/switchMap';

1. Overview
[image: Us]This is a practical guide to Angular for experienced programmers who
are building client applications in HTML and TypeScript.

Organization

The documentation is divided into major thematic sections, each
a collection of pages devoted to that theme.

	QuickStart	The foundation for every page and sample in this documentation.

	Tutorial	A step-by-step, immersive approach to learning Angular that
introduces the major features of Angular in an application context.

	Basics	The essential ingredients of Angular development.

	Developer Guide	In-depth analysis of Angular features and development practices.

	Cookbook	Recipes for specific application challenges, mostly code snippets with a minimum of exposition.

	API Reference	Authoritative details about each member of the Angular libraries.

Learning path

You don't have to read the guide straight through. Most pages stand on their own.

For those new to Angular, the recommended learning path runs through the Basics section:

	For the big picture, read the Architecture overview.

	Try QuickStart. QuickStart is the "Hello, World" of Angular 2.
It shows you how to set up the libraries and tools you'll need to write any Angular app.

	Take the Tour of Heroes tutorial, which picks up where QuickStart leaves off,
and builds a simple data-driven app. The app demonstrates the essential characteristics of a professional application:
a sensible project structure, data binding, master/detail, services, dependency injection, navigation, and remote data access.

	Displaying Data explains how to display information on the screen.

	User Input covers how Angular responds to user behavior.

	Forms handles user data entry and validation within the UI.

	Dependency Injection is the way to build large, maintainable applications
from small, single-purpose parts.

	Template Syntax is a comprehensive study of Angular template HTML.

After reading the above sections, you can skip to any other pages on this site.

Code samples

Each page includes code snippets that you can reuse in your applications.
These snippets are excerpts from a sample application that accompanies the page.

Look for a link to a running version of that sample near the top of each page,
such as this from the Architecture page.

The link launches a browser-based code editor where you can inspect, modify, save, and download the code.

A few early pages are written as tutorials and are clearly marked as such.
The rest of the pages highlight key points in code rather than explain each step necessary to build the sample.
You can always get the full source through the live link.

Reference pages

The Cheat Sheet lists Angular syntax for common scenarios.

The Glossary defines terms that Angular developers should know.

The API Reference is the authority on every public-facing member of the Angular libraries.

Feedback

We welcome feedback!

Use the angular.io Github repo for documentation issues and pull requests.

Use the Angular Github repo to report issues with Angular 2 itself.

2. Architecture
Angular 2 is a framework for building client applications in HTML and
either JavaScript or a language (like Dart or TypeScript) that compiles to JavaScript.

The framework consists of several libraries, some of them core and some optional.

You write Angular applications by composing HTML templates with Angularized markup,
writing component classes to manage those templates, adding application logic in services,
and boxing components and services in modules.

Then you launch the app by bootstrapping the root module.
Angular takes over, presenting your application content in a browser and
responding to user interactions according to the instructions you've provided.

Of course, there is more to it than this.
You'll learn the details in the pages that follow. For now, focus on the big picture.

[image: overview]The architecture diagram identifies the eight main building blocks of an Angular 2 application:

	Modules

	Components

	Templates

	Metadata

	Data binding

	Directives

	Services

	Dependency injection

Learn these building blocks, and you're on your way.

The code referenced on this page is available as a live example.

Modules

[image: Component]Angular apps are modular and Angular has its own modularity system called Angular modules or NgModules.

Angular modules are a big deal.
This page introduces modules; the Angular modules page covers them in depth.

Every Angular app has at least one module, the root module, conventionally named AppModule.

While the root module may be the only module in a small application, most apps have many more
feature modules, each a cohesive block of code dedicated to an application domain,
a workflow, or a closely related set of capabilities.

An Angular module, whether a root or feature, is a class with an @NgModule decorator.

Decorators are functions that modify JavaScript classes.
Angular has many decorators that attach metadata to classes so that it knows
what those classes mean and how they should work.

Learn more about decorators on the web.

NgModule is a decorator function that takes a single metadata object whose properties describe the module.
The most important properties are:

	declarations - the view classes that belong to this module.
Angular has three kinds of view classes: components, directives, and pipes.

	exports - the subset of declarations that should be visible and usable in the component templates of other modules.

	imports - other modules whose exported classes are needed by component templates declared in this module.

	providers - creators of services that this module contributes to
the global collection of services; they become accessible in all parts of the app.

	bootstrap - the main application view, called the root component,
that hosts all other app views. Only the root module should set this bootstrap property.

Here's a simple root module:

app/app.module.ts
import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';
@NgModule({
 imports: [BrowserModule],
 providers: [Logger],
 declarations: [AppComponent],
 exports: [AppComponent],
 bootstrap: [AppComponent]
})
export class AppModule { }
The export of AppComponent is just to show how to export; it isn't actually necessary in this example. A root module has no reason to export anything because other components don't need to import the root module.

Launch an application by bootstrapping its root module.
During development you're likely to bootstrap the AppModule in a main.ts file like this one.

app/main.ts
import { platformBrowserDynamic } from '@angular/platform-browser-dynamic';
import { AppModule } from './app.module';

platformBrowserDynamic().bootstrapModule(AppModule);
Angular modules vs. JavaScript modules

The Angular module — a class decorated with @NgModule — is a fundamental feature of Angular.

JavaScript also has its own module system for managing collections of JavaScript objects.
It's completely different and unrelated to the Angular module system.

In JavaScript each file is a module and all objects defined in the file belong to that module.
The module declares some objects to be public by marking them with the export key word.
Other JavaScript modules use import statements to access public objects from other modules.

import { NgModule } from '@angular/core';
import { AppComponent } from './app.component';
export class AppModule { }
These are two different and complementary module systems. Use them both to write your apps.

Angular libraries

[image: Component]Angular ships as a collection of JavaScript modules. You can think of them as library modules.

Each Angular library name begins with the @angular prefix.

You install them with the npm package manager and import parts of them with JavaScript import statements.

For example, import Angular's Component decorator from the @angular/core library like this:

import { Component } from '@angular/core';
You also import Angular modules from Angular libraries using JavaScript import statements:

import { BrowserModule } from '@angular/platform-browser';
In the example of the simple root module above, the application module needs material from within that BrowserModule. To access that material, add it to the @NgModule metadata imports like this.

imports: [BrowserModule],
In this way you're using both the Angular and JavaScript module systems together.

It's easy to confuse the two systems because they share the common vocabulary of "imports" and "exports".
Hang in there. The confusion yields to clarity with time and experience.

Components

[image: Component]A component controls a patch of screen called a view.

For example, the following views are controlled by components:

	The app root with the navigation links.

	The list of heroes.

	The hero editor.

You define a component's application logic—what it does to support the view—inside a class.
The class interacts with the view through an API of properties and methods.

For example, this HeroListComponent has a heroes property that returns an array of heroes
that it acquires from a service.
HeroListComponent also has a selectHero() method that sets a selectedHero property when the user clicks to choose a hero from that list.

app/hero-list.component.ts (class)
export class HeroListComponent implements OnInit {
 heroes: Hero[];
 selectedHero: Hero;

 constructor(private service: HeroService) { }

 ngOnInit() {
 this.heroes = this.service.getHeroes();
 }

 selectHero(hero: Hero) { this.selectedHero = hero; }
}
Angular creates, updates, and destroys components as the user moves through the application.
Your app can take action at each moment in this lifecycle through optional lifecycle hooks, like ngOnInit() declared above.

Templates

[image: Template]You define a component's view with its companion template. A template is a form of HTML
that tells Angular how to render the component.

A template looks like regular HTML, except for a few differences. Here is a
template for our HeroListComponent:

app/hero-list.component.html
<h2>Hero List</h2>

<p><i>Pick a hero from the list</i></p>

 <li *ngFor="let hero of heroes" (click)="selectHero(hero)">
 {{hero.name}}

<hero-detail *ngIf="selectedHero" [hero]="selectedHero"></hero-detail>
Although this template uses typical HTML elements like <h2> and <p>, it also has some differences. Code like *ngFor, {{hero.name}}, (click), [hero], and <hero-detail> uses Angular's template syntax.

In the last line of the template, the <hero-detail> tag is a custom element that represents a new component, HeroDetailComponent.

The HeroDetailComponent is a different component than the HeroListComponent you've been reviewing.
The HeroDetailComponent (code not shown) presents facts about a particular hero, the
hero that the user selects from the list presented by the HeroListComponent.
The HeroDetailComponent is a child of the HeroListComponent.

[image: Metadata]Notice how <hero-detail> rests comfortably among native HTML elements. Custom components mix seamlessly with native HTML in the same layouts.

[image: Metadata]Metadata tells Angular how to process a class.

Looking back at the code for HeroListComponent, you can see that it's just a class.
There is no evidence of a framework, no "Angular" in it at all.

In fact, HeroListComponent really is just a class. It's not a component until you tell Angular about it.

To tell Angular that HeroListComponent is a component, attach metadata to the class.

In TypeScript, you attach metadata by using a decorator.
Here's some metadata for HeroListComponent:

app/hero-list.component.ts (metadata)
@Component({
 selector: 'hero-list',
 templateUrl: 'app/hero-list.component.html',
 providers: [HeroService]
})
export class HeroListComponent implements OnInit {
/* . . . */
}
Here is the @Component decorator, which identifies the class
immediately below it as a component class.

The @Component decorator takes a required configuration object with the
information Angular needs to create and present the component and its view.

Here are a few of the possible @Component configuration options:

	selector: CSS selector that tells Angular to create and insert an instance of this component
where it finds a <hero-list> tag in parent HTML.
For example, if an app's HTML contains <hero-list></hero-list>, then
Angular inserts an instance of the HeroListComponent view between those tags.

	templateUrl: address of this component's HTML template, shown above.

	directives: array of the components or directives that this template requires.
In the last line of hero-list.component.html, Angular inserts a HeroDetailComponent
in the space indicated by <hero-detail> tags.
Angular does so only if HeroDetailComponent is in this directives array.

	providers: array of dependency injection providers for services that the component requires.
This is one way to tell Angular that the component's constructor requires a HeroService
so it can get the list of heroes to display.

[image: Metadata]The metadata in the @Component tells Angular where to get the major building blocks you specify for the component.

The template, metadata, and component together describe a view.

Apply other metadata decorators in a similar fashion to guide Angular behavior.
@Injectable, @Input, and @Output are a few of the more popular decorators.

The architectural takeaway is that you must add metadata to your code
so that Angular knows what to do.

Data binding

Without a framework, you would be responsible for pushing data values into the HTML controls and turning user responses
into actions and value updates. Writing such push/pull logic by hand is tedious, error-prone, and a nightmare to
read as any experienced jQuery programmer can attest.

[image: Data Binding]Angular supports data binding,
a mechanism for coordinating parts of a template with parts of a component.
Add binding markup to the template HTML to tell Angular how to connect both sides.

As the diagram shows, there are four forms of data binding syntax. Each form has a direction — to the DOM, from the DOM, or in both directions.

The HeroListComponent example template has three forms:

app/hero-list.component.html (binding)
{{hero.name}}
<hero-detail [hero]="selectedHero"></hero-detail>
<li (click)="selectHero(hero)">

	The {{hero.name}} interpolation
displays the component's hero.name property value within the tags.

	The [hero] property binding passes the value of selectedHero from
the parent HeroListComponent to the hero property of the child HeroDetailComponent.

	The (click) event binding calls the component's selectHero method when the user clicks a hero's name.

Two-way data binding is an important fourth form
that combines property and event binding in a single notation, using the ngModel directive.
Here's an example from the HeroDetailComponent template:

app/hero-detail.component.html (ngModel)
<input [(ngModel)]="hero.name">
In two-way binding, a data property value flows to the input box from the component as with property binding.
The user's changes also flow back to the component, resetting the property to the latest value,
as with event binding.

Angular processes all data bindings once per JavaScript event cycle,
from the root of the application component tree through all child components.

[image: Data Binding]Data binding plays an important role in communication
between a template and its component.

[image: Parent/Child binding]Data binding is also important for communication between parent and child components.

Directives

[image: Parent child]Angular templates are dynamic. When Angular renders them, it transforms the DOM
according to the instructions given by directives.

A directive is a class with directive metadata. In TypeScript, apply the @Directive decorator
to attach metadata to the class.

A component is a directive-with-a-template;
a @Component decorator is actually a @Directive decorator extended with template-oriented features.

While a component is technically a directive,
components are so distinctive and central to Angular applications that this architectural overview separates components from directives.

Two other kinds of directives exist: structural and attribute directives.

They tend to appear within an element tag as attributes do,
sometimes by name but more often as the target of an assignment or a binding.

Structural directives alter layout by adding, removing, and replacing elements in DOM.

The example template uses two built-in structural directives:

app/hero-list.component.html (structural)
<li *ngFor="let hero of heroes">
<hero-detail *ngIf="selectedHero"></hero-detail>

	*ngFor tells Angular to stamp out one per hero in the heroes list.

	*ngIf includes the HeroDetail component only if a selected hero exists.

Attribute directives alter the appearance or behavior of an existing element.
In templates they look like regular HTML attributes, hence the name.

The ngModel directive, which implements two-way data binding, is
an example of an attribute directive. ngModel modifies the behavior of
an existing element (typically an <input>)
by setting its display value property and responding to change events.

app/hero-detail.component.html (ngModel)
<input [(ngModel)]="hero.name">
Angular has a few more directives that either alter the layout structure
(for example, ngSwitch)
or modify aspects of DOM elements and components
(for example, ngStyle and ngClass).

Of course, you can also write your own directives. Components such as
HeroListComponent are one kind of custom directive.

Services

[image: Service]Service is a broad category encompassing any value, function, or feature that your application needs.

Almost anything can be a service.
A service is typically a class with a narrow, well-defined purpose. It should do something specific and do it well.

Examples include:

	logging service

	data service

	message bus

	tax calculator

	application configuration

There is nothing specifically Angular about services. Angular has no definition of a service.
There is no service base class, and no place to register a service.

Yet services are fundamental to any Angular application. Components are big consumers of services.

Here's an example of a service class that logs to the browser console:

app/logger.service.ts (class)
export class Logger {
 log(msg: any) { console.log(msg); }
 error(msg: any) { console.error(msg); }
 warn(msg: any) { console.warn(msg); }
}
Here's a HeroService that fetches heroes and returns them in a resolved Promise.
The HeroService depends on the Logger service and another BackendService that handles the server communication grunt work.

app/hero.service.ts (class)
export class HeroService {
 private heroes: Hero[] = [];

 constructor(
 private backend: BackendService,
 private logger: Logger) { }

 getHeroes() {
 this.backend.getAll(Hero).then((heroes: Hero[]) => {
 this.logger.log(`Fetched ${heroes.length} heroes.`);
 this.heroes.push(...heroes); // fill cache
 });
 return this.heroes;
 }
}
Services are everywhere.

Component classes should be lean. They don't fetch data from the server,
validate user input, or log directly to the console.
They delegate such tasks to services.

A component's job is to enable the user experience and nothing more. It mediates between the view (rendered by the template)
and the application logic (which often includes some notion of a model).
A good component presents properties and methods for data binding.
It delegates everything nontrivial to services.

Angular doesn't enforce these principles.
It won't complain if you write a "kitchen sink" component with 3000 lines.

Angular does help you follow these principles by making it easy to factor your
application logic into services and make those services available to components through dependency injection.

Dependency injection

[image: Service]Dependency injection is a way to supply a new instance of a class
with the fully-formed dependencies it requires. Most dependencies are services.
Angular uses dependency injection to provide new components with the services they need.

Angular can tell which services a component needs by looking at the types of its constructor parameters.
For example, the constructor of your HeroListComponent needs a HeroService:

app/hero-list.component.ts (constructor)
constructor(private service: HeroService) { }
When Angular creates a component, it first asks an injector for
the services that the component requires.

An injector maintains a container of service instances that it has previously created.
If a requested service instance is not in the container, the injector makes one and adds it to the container
before returning the service to Angular.
When all requested services have been resolved and returned,
Angular can call the component's constructor with those services as arguments.
This is dependency injection.

The process of HeroService injection looks a bit like this:

[image: Service]If the injector doesn't have a HeroService, how does it know how to make one?

In brief, you must have previously registered a provider of the HeroService with the injector.
A provider is something that can create or return a service, typically the service class itself.

You can register providers in modules or in components.

In general, add providers to the root module so that
the same instance of a service is available everywhere.

app/app.module.ts (module providers)
providers: [
 BackendService,
 HeroService,
 Logger
],
Alternatively, register at a component level in the providers property of the @Component metadata:

app/hero-list.component.ts (component providers)
@Component({
 selector: 'hero-list',
 templateUrl: 'app/hero-list.component.html',
 providers: [HeroService]
})
Registering at a component level means you get a new instance of the
service with each new instance of that component.

Points to remember about dependency injection:

	Dependency injection is wired into the Angular framework and used everywhere.

	The injector is the main mechanism.

	An injector maintains a container of service instances that it created.

	An injector can create a new service instance from a provider.

	A provider is a recipe for creating a service.

	Register providers with injectors.

Wrap up

You've learned the basics about the eight main building blocks of an Angular application:

	Modules

	Components

	Templates

	Metadata

	Data binding

	Directives

	Services

	Dependency injection

That's a foundation for everything else in an Angular application,
and it's more than enough to get going.
But it doesn't include everything you need to know.

Here is a brief, alphabetical list of other important Angular features and services.
Most of them are covered in this documentation (or soon will be).

Animations: Animate component behavior
without deep knowledge of animation techniques or CSS with Angular's animation library.

Change detection: The change detection documentation will cover how Angular decides that a component property value has changed,
when to update the screen, and how it uses zones to intercept asynchronous activity and run its change detection strategies.

Events: The events documentation will cover how to use components and services to raise events with mechanisms for
publishing and subscribing to events.

Forms: Support complex data entry scenarios with HTML-based validation and dirty checking.

HTTP: Communicate with a server to get data, save data, and invoke server-side actions with an HTTP client.

Lifecycle hooks: Tap into key moments in the lifetime of a component, from its creation to its destruction,
by implementing the lifecycle hook interfaces.

Pipes: Use pipes in your templates to improve the user experience by transforming values for display. Consider this currency pipe expression:

price | currency:'USD':true

It displays a price of "42.33" as $42.33.

Router: Navigate from page to page within the client
 application and never leave the browser.

Testing: Run unit tests with Angular's
testing library
 on your application parts as they interact with the Angular framework.

3. Displaying Data
We typically display data in Angular by binding controls in an HTML template
to properties of an Angular component.

In this chapter, we'll create a component with a list of heroes. Each hero has a name.
We'll display the list of hero names and
conditionally show a message below the list.

The final UI looks like this:

[image: Final UI]

	Showing component properties with interpolation

	Showing an array property with NgFor

	Conditional display with NgIf

The demonstrates all of the syntax and code
snippets described in this chapter.

Showing component properties with interpolation

The easiest way to display a component property
is to bind the property name through interpolation.
With interpolation, we put the property name in the view template, enclosed in double curly braces: {{myHero}}.

Let's build a small illustrative example together.

Create a new project folder () and follow the steps in the QuickStart.

Then modify the file by
changing the template and the body of the component.
When we're done, it should look like this:

app/app.component.ts
import { Component } from '@angular/core';

@Component({
 selector: 'my-app',
 template: `
 <h1>{{title}}</h1>
 <h2>My favorite hero is: {{myHero}}</h2>
 `
})
export class AppComponent {
 title = 'Tour of Heroes';
 myHero = 'Windstorm';
}
We added two properties to the formerly empty component: title and myHero.

Our revised template displays the two component properties using double curly brace
interpolation:

template: `
 <h1>{{title}}</h1>
 <h2>My favorite hero is: {{myHero}}</h2>
 `
The template is a multi-line string within ECMAScript 2015 backticks (`).
The backtick (`) — which is not the same character as a single
quote (') — has many nice features. The feature we're exploiting here
is the ability to compose the string over several lines, which makes for
much more readable HTML.

Angular automatically pulls the value of the title and myHero properties from the component and
inserts those values into the browser. Angular updates the display
when these properties change.

More precisely, the redisplay occurs after some kind of asynchronous event related to
the view such as a keystroke, a timer completion, or an async XHR response.
We don't have those in this sample.
But then the properties aren't changing on their own either. For the moment we must operate on faith.

Notice that we haven't called new to create an instance of the AppComponent class.
Angular is creating an instance for us. How?

Notice the CSS selector in the @Component decorator that specifies an element named my-app.
Remember back in QuickStart that we added the <my-app> element to the body of our index.html file:

index.html (body)
<body>
 <my-app>loading...</my-app>
</body>
When we bootstrap with the AppComponent class (in), Angular looks for a <my-app>
in the index.html, finds it, instantiates an instance of AppComponent, and renders it
inside the <my-app> tag.

Try running the app. It should display the title and hero name:

[image: Title and Hero]Let's review some of the choices we made and consider alternatives.

Template inline or template file?

We can store our component's template in one of two places.
We can define it inline using the template property, as we do here.
Or we can define the template in a separate HTML file and link to it in
the component metadata using the @Component decorator's templateUrl property.

The choice between inline and separate HTML is a matter of taste,
circumstances, and organization policy.
Here we're using inline HTML because the template is small, and the demo
is simpler without the additional HTML file.

In either style, the template data bindings have the same access to the component's properties.

Constructor or variable initialization?

We initialized our component properties using variable assignment.
This is a wonderfully concise and compact technique.

Some folks prefer to declare the properties and initialize them within a constructor like this:

app/app-ctor.component.ts (class)
export class AppCtorComponent {
 title: string;
 myHero: string;

 constructor() {
 this.title = 'Tour of Heroes';
 this.myHero = 'Windstorm';
 }
}
That's fine too. The choice is a matter of taste and organization policy.
We'll adopt the more terse "variable assignment" style in this chapter simply because
there will be less code to read.

Showing an array property with *ngFor

We want to display a list of heroes. We begin by adding an array of hero names to the component and redefine myHero to be the first name in the array.

app/app.component.ts (class)
export class AppComponent {
 title = 'Tour of Heroes';
 heroes = ['Windstorm', 'Bombasto', 'Magneta', 'Tornado'];
 myHero = this.heroes[0];
}
Now we use the Angular ngFor directive in the template to display
each item in the heroes list.

app/app.component.ts (template)
 template: `
 <h1>{{title}}</h1>
 <h2>My favorite hero is: {{myHero}}</h2>
 <p>Heroes:</p>

 <li *ngFor="let hero of heroes">
 {{ hero }}

 `
Our presentation is the familiar HTML unordered list with and tags. Let's focus on the tag.

<li *ngFor="let hero of heroes">
 {{ hero }}

We added a somewhat mysterious *ngFor to the element.
That's the Angular "repeater" directive.
Its presence on the tag marks that element (and its children) as the "repeater template".

Don't forget the leading asterisk (*) in *ngFor. It is an essential part of the syntax.
Learn more about this and ngFor in the Template Syntax chapter.

Notice the hero in the ngFor double-quoted instruction;
it is an example of a template input variable.

Angular duplicates the for each item in the list, setting the hero variable
to the item (the hero) in the current iteration. Angular uses that variable as the
context for the interpolation in the double curly braces.

We happened to give ngFor an array to display.
In fact, ngFor can repeat items for any iterable
object.

Now the heroes appear in an unordered list.

[image: After ngfor]Creating a class for the data

We are defining our data directly inside our component.
That's fine for a demo but certainly isn't a best practice. It's not even a good practice.
Although we won't do anything about that in this chapter, we'll make a mental note to fix this down the road.

At the moment, we're binding to an array of strings. We do that occasionally in real applications, but
most of the time we're binding to more specialized objects.

Let's turn our array of hero names into an array of Hero objects. For that we'll need a Hero class.

Create a new file in the app folder called with the following code:

app/hero.ts (excerpt)
export class Hero {
 constructor(
 public id: number,
 public name: string) { }
}
We've defined a class with a constructor and two properties: id and name.

It might not look like we have properties, but we do. We're taking
advantage of a TypeScript shortcut in our declaration of the constructor parameters.

Consider the first parameter:

app/hero.ts (id)
public id: number,
That brief syntax does a lot:

	Declares a constructor parameter and its type

	Declares a public property of the same name

	Initializes that property with the corresponding argument when we "new" an instance of the class

Using the Hero class

Let's make the heroes property in our component return an array of these Hero objects.

app/app.component.ts (heroes)
heroes = [
 new Hero(1, 'Windstorm'),
 new Hero(13, 'Bombasto'),
 new Hero(15, 'Magneta'),
 new Hero(20, 'Tornado')
];
myHero = this.heroes[0];
We'll have to update the template.
At the moment it displays the hero's id and name.
Let's fix that so we display only the hero's name property.

app/app.component.ts (template)
template: `
 <h1>{{title}}</h1>
 <h2>My favorite hero is: {{myHero.name}}</h2>
 <p>Heroes:</p>

 <li *ngFor="let hero of heroes">
 {{ hero.name }}

`
Our display looks the same, but now we know much better what a hero really is.

Conditional display with NgIf

Sometimes an app needs to display a view or a portion of a view only under specific circumstances.

In our example, we'd like to display a message if we have a large number of heroes, say, more than 3.

The Angular ngIf directive inserts or removes an element based on a truthy/falsey condition.
We can see it in action by adding the following paragraph at the bottom of the template:

app/app.component.ts (message)
<p *ngIf="heroes.length > 3">There are many heroes!</p>
Don't forget the leading asterisk (*) in *ngIf. It is an essential part of the syntax.
Learn more about this and ngIf in the Template Syntax chapter.

The template expression inside the double quotes
looks much like TypeScript, and it is much like TypeScript.
When the component's list of heroes has more than 3 items, Angular adds the paragraph to the DOM and the message appears.
If there are 3 or fewer items, Angular omits the paragraph, so no message appears.

Angular isn't showing and hiding the message. It is adding and removing the paragraph element from the DOM.
That hardly matters here. But it would matter a great deal, from a performance perspective, if
we were conditionally including or excluding a big chunk of HTML with many data bindings.

Try it out. Because the array has four items, the message should appear.
Go back into and delete or comment out one of the elements from the hero array.
The browser should refresh automatically and the message should disappear.

Summary

Now we know how to use:

	Interpolation with double curly braces to display a component property

	ngFor to display an array of items

	A TypeScript class to shape the model data for our component and display properties of that model

	ngIf to conditionally display a chunk of HTML based on a boolean expression

Here's our final code:

import { Component } from '@angular/core';

import { Hero } from './hero';

@Component({
 selector: 'my-app',
 template: `
 <h1>{{title}}</h1>
 <h2>My favorite hero is: {{myHero.name}}</h2>
 <p>Heroes:</p>

 <li *ngFor="let hero of heroes">
 {{ hero.name }}

 <p *ngIf="heroes.length > 3">There are many heroes!</p>
`
})
export class AppComponent {
 title = 'Tour of Heroes';
 heroes = [
 new Hero(1, 'Windstorm'),
 new Hero(13, 'Bombasto'),
 new Hero(15, 'Magneta'),
 new Hero(20, 'Tornado')
];
 myHero = this.heroes[0];
}
export class Hero {
 constructor(
 public id: number,
 public name: string) { }
}
import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';

@NgModule({
 imports: [
 BrowserModule
],
 declarations: [
 AppComponent
],
 bootstrap: [AppComponent]
})
export class AppModule { }
import { platformBrowserDynamic } from '@angular/platform-browser-dynamic';

import { AppModule } from './app.module';

platformBrowserDynamic().bootstrapModule(AppModule);

4. User Input
When the user clicks a link, pushes a button, or enters text
we want to know about it. These user actions all raise DOM events.
In this chapter we learn to bind to those events using the Angular
event binding syntax.

Run the .

Binding to user input events

We can use Angular event bindings
to respond to any DOM event.

The syntax is simple. We surround the DOM event name in parentheses and assign a quoted template statement to it.
As an example, here's an event binding that implements a click handler:

<button (click)="onClickMe()">Click me!</button>
The (click) to the left of the equal sign identifies the button's click event as the target of the binding.
The text within quotes on the right is the template statement in which we
respond to the click event by calling the component's onClickMe method. A template statement is a subset
of JavaScript with restrictions and a few added tricks.

When writing a binding we must be aware of a template statement's execution context.
The identifiers appearing within a statement belong to a specific context object.
That object is usually the Angular component that controls the template ... which it definitely is
in this case because that snippet of HTML belongs to the following component:

app/click-me.component.ts
@Component({
 selector: 'click-me',
 template: `
 <button (click)="onClickMe()">Click me!</button>
 {{clickMessage}}`
})
export class ClickMeComponent {
 clickMessage = '';

 onClickMe() {
 this.clickMessage = 'You are my hero!';
 }
}
When the user clicks the button, Angular calls the component's onClickMe method.

Get user input from the $event object

We can bind to all kinds of events. Let's bind to the keyup event of an input box and replay
what the user types back onto the screen.

This time we'll (1) listen to an event and (2) grab the user's input.

app/keyup.components.ts (template v.1)
template: `
 <input (keyup)="onKey($event)">
 <p>{{values}}</p>
`
Angular makes an event object available in the $event variable,
which we pass to the component's onKey() method.
The user data we want is in that variable somewhere.

app/keyup.components.ts (class v.1)
export class KeyUpComponent_v1 {
 values = '';

 // without strong typing
 onKey(event:any) {
 this.values += event.target.value + ' | ';
 }
}
The shape of the $event object is determined by whatever raises the event.
The keyup event comes from the DOM, so $event must be a standard DOM event object.
The $event.target gives us an
HTMLInputElement, which
has a value property that contains our user input data.

The onKey() component method is where we extract the user's input
from the event object, adding that input to the list of user data that we're accumulating in the component's values property.
We then use interpolation
to display the accumulating values property back on screen.

Enter the letters "abc", and then backspace to remove them.
Here's what the UI displays:

a | ab | abc | ab | a | |[image: key up 1]We cast the $event as an any type, which means we've abandoned strong typing
to simplify our code. We generally prefer the strong typing that TypeScript affords.
We can rewrite the method, casting to HTML DOM objects like this.

app/keyup.components.ts (class v.1 - strongly typed)
export class KeyUpComponent_v1 {
 values = '';

 // with strong typing
 onKey(event: KeyboardEvent) {
 this.values += (<HTMLInputElement>event.target).value + ' | ';
 }
}

Strong typing reveals a serious problem with passing a DOM event into the method:
too much awareness of template details, too little separation of concerns.

We'll address this problem in our next try at processing user keystrokes.

Get user input from a template reference variable

There's another way to get the user data without the $event variable.

Angular has a syntax feature called template reference variables.
These variables grant us direct access to an element.
We declare a template reference variable by preceding an identifier with a hash/pound character (#).

Here's an example of using a template reference variable
to implement a clever keystroke loopback in an ultra-simple template.

app/loop-back.component.ts
@Component({
 selector: 'loop-back',
 template: `
 <input #box (keyup)="0">
 <p>{{box.value}}</p>
 `
})
export class LoopbackComponent { }
We've declared a template reference variable named box on the <input> element.
The box variable is a reference to the <input> element itself, which means we can
grab the input element's value and display it
with interpolation between <p> tags.

The template is completely self contained. It doesn't bind to the component,
and the component does nothing.

Type in the input box, and watch the display update with each keystroke. Voila!

[image: loop back]This won't work at all unless we bind to an event.

Angular only updates the bindings (and therefore the screen)
if we do something in response to asynchronous events such as keystrokes.

That's why we bind the keyup event to a statement that does ... well, nothing.
We're binding to the number 0, the shortest statement we can think of.
That is all it takes to keep Angular happy. We said it would be clever!

That template reference variable is intriguing. It's clearly easier to get to the textbox with that
variable than to go through the $event object. Maybe we can rewrite our previous
keyup example so that it uses the variable to get the user's input. Let's give it a try.

app/keyup.components.ts (v2)
@Component({
 selector: 'key-up2',
 template: `
 <input #box (keyup)="onKey(box.value)">
 <p>{{values}}</p>
 `
})
export class KeyUpComponent_v2 {
 values = '';
 onKey(value: string) {
 this.values += value + ' | ';
 }
}
That sure seems easier.
An especially nice aspect of this approach is that our component code gets clean data values from the view.
It no longer requires knowledge of the $event and its structure.

Key event filtering (with key.enter)

Perhaps we don't care about every keystroke.
Maybe we're only interested in the input box value when the user presses Enter, and we'd like to ignore all other keys.
When we bind to the (keyup) event, our event handling statement hears every keystroke.
We could filter the keys first, examining every $event.keyCode, and update the values property only if the key is Enter.

Angular can filter the key events for us. Angular has a special syntax for keyboard events.
We can listen for just the Enter key by binding to Angular's keyup.enter pseudo-event.

Only then do we update the component's values property. (In this example,
the update happens inside the event binding statement. A better practice
would be to put the update code in the component.)

app/keyup.components.ts (v3)
@Component({
 selector: 'key-up3',
 template: `
 <input #box (keyup.enter)="values=box.value">
 <p>{{values}}</p>
 `
})
export class KeyUpComponent_v3 {
 values = '';
}
Here's how it works.

[image: key up 3]On blur

Our previous example won't transfer the current state of the input box if the user mouses away and clicks
elsewhere on the page. We update the component's values property only when the user presses Enter
while the focus is inside the input box.

Let's fix that by listening to the input box's blur event as well.

app/keyup.components.ts (v4)
@Component({
 selector: 'key-up4',
 template: `
 <input #box
 (keyup.enter)="values=box.value"
 (blur)="values=box.value">

 <p>{{values}}</p>
 `
})
export class KeyUpComponent_v4 {
 values = '';
}
Put it all together

We learned how to display data in the previous chapter.
We've acquired a small arsenal of event binding techniques in this chapter.

Let's put it all together in a micro-app
that can display a list of heroes and add new heroes to that list.
The user can add a hero by first typing in the input box and then
pressing Enter, clicking the Add button, or clicking elsewhere on the page.

[image: Little Tour of Heroes]Below is the "Little Tour of Heroes" component.
We'll call out the highlights after we bask briefly in its minimalist glory.

app/little-tour.component.ts
@Component({
 selector: 'little-tour',
 template: `
 <input #newHero
 (keyup.enter)="addHero(newHero.value)"
 (blur)="addHero(newHero.value); newHero.value='' ">

 <button (click)=addHero(newHero.value)>Add</button>

 <li *ngFor="let hero of heroes">{{hero}}
 `
})
export class LittleTourComponent {
 heroes = ['Windstorm', 'Bombasto', 'Magneta', 'Tornado'];
 addHero(newHero: string) {
 if (newHero) {
 this.heroes.push(newHero);
 }
 }
}
We've seen almost everything here before. A few things are new or bear repeating.

Use template variables to refer to elements

The newHero template variable refers to the <input> element.
We can use newHero from any sibling or child of the <input> element.

Getting the element from a template variable makes the button click handler
simpler. Without the variable, we'd have to use a fancy CSS selector
to find the input element.

Pass values, not elements

We could have passed the newHero into the component's addHero method.

But that would require addHero to pick its way through the <input> DOM element,
something we learned to dislike in our first try at a keyup component.

Instead, we grab the input box value and pass that to addHero.
The component knows nothing about HTML or the DOM, which is the way we like it.

Keep template statements simple

We bound (blur) to two JavaScript statements.

We like the first one, which calls addHero.
We do not like the second one, which assigns an empty string to the input box value.

The second statement exists for a good reason. We have to clear the input box after adding the new hero to the list.
The component has no way to do that itself because it has no access to the
input box (our design choice).

Although the example works, we are rightly wary of JavaScript in HTML.
Template statements are powerful. We're supposed to use them responsibly.
Complex JavaScript in HTML is irresponsible.

Should we reconsider our reluctance to pass the input box into the component?

There should be a better third way. And there is, as we'll see when we learn about NgModel in the Forms chapter.

Source code

Here is all the code we talked about in this chapter.

import { Component } from '@angular/core';

@Component({
 selector: 'click-me',
 template: `
 <button (click)="onClickMe()">Click me!</button>
 {{clickMessage}}`
})
export class ClickMeComponent {
 clickMessage = '';

 onClickMe() {
 this.clickMessage = 'You are my hero!';
 }
}
import { Component } from '@angular/core';

@Component({
 selector: 'key-up1',
 template: `
 <input (keyup)="onKey($event)">
 <p>{{values}}</p>
 `
})
export class KeyUpComponent_v1 {
 values = '';

 /*
 // without strong typing
 onKey(event:any) {
 this.values += event.target.value + ' | ';
 }
 */
 // with strong typing
 onKey(event: KeyboardEvent) {
 this.values += (<HTMLInputElement>event.target).value + ' | ';
 }
}

//

@Component({
 selector: 'key-up2',
 template: `
 <input #box (keyup)="onKey(box.value)">
 <p>{{values}}</p>
 `
})
export class KeyUpComponent_v2 {
 values = '';
 onKey(value: string) {
 this.values += value + ' | ';
 }
}

//

@Component({
 selector: 'key-up3',
 template: `
 <input #box (keyup.enter)="values=box.value">
 <p>{{values}}</p>
 `
})
export class KeyUpComponent_v3 {
 values = '';
}

//

@Component({
 selector: 'key-up4',
 template: `
 <input #box
 (keyup.enter)="values=box.value"
 (blur)="values=box.value">

 <p>{{values}}</p>
 `
})
export class KeyUpComponent_v4 {
 values = '';
}
import { Component } from '@angular/core';
@Component({
 selector: 'loop-back',
 template: `
 <input #box (keyup)="0">
 <p>{{box.value}}</p>
 `
})
export class LoopbackComponent { }
import { Component } from '@angular/core';

@Component({
 selector: 'little-tour',
 template: `
 <input #newHero
 (keyup.enter)="addHero(newHero.value)"
 (blur)="addHero(newHero.value); newHero.value='' ">

 <button (click)=addHero(newHero.value)>Add</button>

 <li *ngFor="let hero of heroes">{{hero}}
 `
})
export class LittleTourComponent {
 heroes = ['Windstorm', 'Bombasto', 'Magneta', 'Tornado'];
 addHero(newHero: string) {
 if (newHero) {
 this.heroes.push(newHero);
 }
 }
}
Summary

We've mastered the basic primitives for responding to user input and gestures.
As powerful as these primitives are, they are a bit clumsy for handling
large amounts of user input. We're operating down at the low level of events when
we should be writing two-way bindings between data entry fields and model properties.

Angular has a two-way binding called NgModel, which we'll learn about
in the Forms chapter.

5. Forms
We’ve all used a form to log in, submit a help request, place an order, book a flight,
schedule a meeting and perform countless other data entry tasks.
Forms are the mainstay of business applications.

Any seasoned web developer can slap together an HTML form with all the right tags.
It's more challenging to create a cohesive data entry experience that guides the
user efficiently and effectively through the workflow behind the form.

That takes design skills that are, to be frank, well out of scope for this chapter.

It also takes framework support for
two-way data binding, change tracking, validation, and error handling
... which we shall cover in this chapter on Angular forms.

We will build a simple form from scratch, one step at a time. Along the way we'll learn how to

	build an Angular form with a component and template

	two-way data bind with [(ngModel)] syntax for reading and writing values to input controls

	track the change state and validity of form controls using ngModel in combination with a form

	provide strong visual feedback using special CSS classes that track the state of the controls

	display validation errors to users and enable/disable form controls

	use template reference variables for sharing information among HTML elements

Run the .

Template-Driven Forms

Many of us will build forms by writing templates in the Angular template syntax with
the form-specific directives and techniques described in this chapter.

That's not the only way to create a form but it's the way we'll cover in this chapter.

We can build almost any form we need with an Angular template — login forms, contact forms ... pretty much any business forms.
We can lay out the controls creatively, bind them to data, specify validation rules and display validation errors,
conditionally enable or disable specific controls, trigger built-in visual feedback, and much more.

It will be pretty easy because Angular handles many of the repetitive, boiler plate tasks we'd
otherwise wrestle with ourselves.

We'll discuss and learn to build the following template-driven form:

[image: Clean Form]Here at the Hero Employment Agency we use this form to maintain personal information about the
heroes in our stable. Every hero needs a job. It's our company mission to match the right hero with the right crisis!

Two of the three fields on this form are required. Required fields have a green bar on the left to make them easy to spot.

If we delete the hero name, the form displays a validation error in an attention grabbing style:

[image: Invalid, Name Required]Note that the submit button is disabled and the "required" bar to the left of the input control changed from green to red.

We'll customize the colors and location of the "required" bar with standard CSS.

We will build this form in the following sequence of small steps

	Create the Hero model class

	Create the component that controls the form

	Create a template with the initial form layout

	Bind data properties to each form input control with the ngModel two-way data binding syntax

	Add the name attribute to each form input control

	Add custom CSS to provide visual feedback

	Show and hide validation error messages

	Handle form submission with ngSubmit

	Disable the form’s submit button until the form is valid

Setup

Create a new project folder (angular2-forms) and follow the steps in the QuickStart.

Create the Hero Model Class

As users enter form data, we capture their changes and update an instance of a model.
We can't layout the form until we know what the model looks like.

A model can be as simple as a "property bag" that holds facts about a thing of application importance.
That describes well our Hero class with its three required fields (id, name, power)
and one optional field (alterEgo).

Create a new file in the app folder called hero.ts and give it the following class definition:

app/hero.ts
export class Hero {

 constructor(
 public id: number,
 public name: string,
 public power: string,
 public alterEgo?: string
) { }

}
It's an anemic model with few requirements and no behavior. Perfect for our demo.

The TypeScript compiler generates a public field for each public constructor parameter and
assigns the parameter’s value to that field automatically when we create new heroes.

The alterEgo is optional and the constructor lets us omit it; note the (?) in alterEgo?.

We can create a new hero like this:

let myHero = new Hero(42, 'SkyDog',
 'Fetch any object at any distance',
 'Leslie Rollover');
console.log('My hero is called ' + myHero.name); // "My hero is called SkyDog"Create a Form component

An Angular form has two parts: an HTML-based template and a code-based Component to handle data and user interactions.

We begin with the Component because it states, in brief, what the Hero editor can do.

Create a new file called hero-form.component.ts and give it the following definition:

app/hero-form.component.ts
import { Component } from '@angular/core';

import { Hero } from './hero';

@Component({
 selector: 'hero-form',
 templateUrl: 'app/hero-form.component.html'
})
export class HeroFormComponent {

 powers = ['Really Smart', 'Super Flexible',
 'Super Hot', 'Weather Changer'];

 model = new Hero(18, 'Dr IQ', this.powers[0], 'Chuck Overstreet');

 submitted = false;

 onSubmit() { this.submitted = true; }

 // TODO: Remove this when we're done
 get diagnostic() { return JSON.stringify(this.model); }
}
There’s nothing special about this component, nothing form-specific, nothing to distinguish it from any component we've written before.

Understanding this component requires only the Angular concepts we’ve learned in previous chapters

	We import the Component decorator from the Angular library as we usually do.

	We import the Hero model we just created.

	The @Component selector value of "hero-form" means we can drop this form in a parent template with a <hero-form> tag.

	The templateUrl property points to a separate file for the template HTML called hero-form.component.html.

	We defined dummy data for model and powers as befits a demo.
Down the road, we can inject a data service to get and save real data
or perhaps expose these properties as inputs and outputs for binding to a
parent component. None of this concerns us now and these future changes won't affect our form.

	We threw in a diagnostic property at the end to return a JSON representation of our model.
It'll help us see what we're doing during our development; we've left ourselves a cleanup note to discard it later.

Why don't we write the template inline in the component file as we often do
elsewhere in the Developer Guide?

There is no “right” answer for all occasions. We like inline templates when they are short.
Most form templates won't be short. TypeScript and JavaScript files generally aren't the best place to
write (or read) large stretches of HTML and few editors are much help with files that have a mix of HTML and code.
We also like short files with a clear and obvious purpose like this one.

We made a good choice to put the HTML template elsewhere.
We'll write that template in a moment. Before we do, we'll take a step back
and revise the app.module.ts and app.component.ts to make use of our new HeroFormComponent.

Revise the app.module.ts

app.module.ts defines the application's root module. In it we identify the external modules we'll use in our application
and declare the components that belong to this module, such as our HeroFormComponent.

Because template-driven forms are in their own module, we need to add the FormsModule to the array of
imports for our application module before we can use forms.

Replace the contents of the "QuickStart" version with the following:

app/app.module.ts
import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';
import { FormsModule } from '@angular/forms';

import { AppComponent } from './app.component';
import { HeroFormComponent } from './hero-form.component';

@NgModule({
 imports: [
 BrowserModule,
 FormsModule
],
 declarations: [
 AppComponent,
 HeroFormComponent
],
 bootstrap: [AppComponent]
})
export class AppModule { }
There are three changes:

	We import FormsModule and our new HeroFormComponent.

	We add the FormsModule to the list of imports defined in the ngModule decorator. This gives our application
access to all of the template-driven forms features, including ngModel.

	We add the HeroFormComponent to the list of declarations defined in the ngModule decorator. This makes
the HeroFormComponent component visible throughout this module.

If a component, directive, or pipe belongs to a module in the imports array, ​DON'T​ declare it in the declarations array.
If you wrote it and it should belong to this module, ​DO​ declare it in the declarations array.

Revise the app.component.ts

app.component.ts is the application's root component. It will host our new HeroFormComponent.

Replace the contents of the "QuickStart" version with the following:

app/app.component.ts
import { Component } from '@angular/core';

@Component({
 selector: 'my-app',
 template: '<hero-form></hero-form>'
})
export class AppComponent { }
There is only one changes:

	The template is simply the new element tag identified by the component's selector property.
This will display the hero form when the application component is loaded.

Create an initial HTML Form Template

Create a new template file called hero-form.component.html and give it the following definition:

app/hero-form.component.html
<div class="container">
 <h1>Hero Form</h1>
 <form>
 <div class="form-group">
 <label for="name">Name</label>
 <input type="text" class="form-control" id="name" required>
 </div>

 <div class="form-group">
 <label for="alterEgo">Alter Ego</label>
 <input type="text" class="form-control" id="alterEgo">
 </div>

 <button type="submit" class="btn btn-default">Submit</button>

 </form>
</div>
That is plain old HTML 5. We're presenting two of the Hero fields, name and alterEgo, and
opening them up for user input in input boxes.

The Name <input> control has the HTML5 required attribute;
the Alter Ego <input> control does not because alterEgo is optional.

We've got a Submit button at the bottom with some classes on it for styling.

We are not using Angular yet. There are no bindings. No extra directives. Just layout.

The container, form-group, form-control, and btn classes
come from Twitter Bootstrap. Purely cosmetic.
We're using Bootstrap to gussy up our form.
Hey, what's a form without a little style!

Angular Forms Do Not Require A Style LibraryAngular makes no use of the container, form-group, form-control, and btn classes or
the styles of any external library. Angular apps can use any CSS library
... or none at all.

Let's add the stylesheet.

	Open a terminal window in the application root folder and enter the command:npm install bootstrap --save
	Open index.html and add the following link to the <head>.<link rel="stylesheet"
 href="node_modules/bootstrap/dist/css/bootstrap.min.css">

Add Powers with *ngFor

Our hero may choose one super power from a fixed list of Agency-approved powers.
We maintain that list internally (in HeroFormComponent).

We'll add a select to our
form and bind the options to the powers list using ngFor,
a technique we might have seen before in the Displaying Data chapter.

Add the following HTML immediately below the Alter Ego group.

app/hero-form.component.html (excerpt)
<div class="form-group">
 <label for="power">Hero Power</label>
 <select class="form-control" id="power" required>
 <option *ngFor="let p of powers" [value]="p">{{p}}</option>
 </select>
</div>
We are repeating the <options> tag for each power in the list of Powers.
The p template input variable is a different power in each iteration;
we display its name using the interpolation syntax with the double-curly-braces.

Two-way data binding with ngModel

Running the app right now would be disappointing.

[image: Early form with no binding]We don't see hero data because we are not binding to the Hero yet.
We know how to do that from earlier chapters.
Displaying Data taught us Property Binding.
User Input showed us how to listen for DOM events with an
Event Binding and how to update a component property with the displayed value.

Now we need to display, listen, and extract at the same time.

We could use those techniques again in our form.
Instead we'll introduce something new, the [(ngModel)] syntax, that
makes binding our form to the model super-easy.

Find the <input> tag for the "Name" and update it like this

app/hero-form.component.html (excerpt)
<input type="text" class="form-control" id="name"
 required
 [(ngModel)]="model.name" name="name">
 TODO: remove this: {{model.name}}
We appended a diagnostic interpolation after the input tag
so we can see what we're doing.
We left ourselves a note to throw it away when we're done.

Focus on the binding syntax: [(ngModel)]="...".

If we ran the app right now and started typing in the Name input box,
adding and deleting characters, we'd see them appearing and disappearing
from the interpolated text.
At some point it might look like this.

[image: ngModel in action]The diagnostic is evidence that we really are flowing values from the input box to the model and
back again. That's two-way data binding!

Notice that we also added a name attribute to our <input> tag and set it to "name"
which makes sense for the hero's name. Any unique value will do, but using a descriptive name is helpful.
Defining a name attribute is a requirement when using [(ngModel)] in combination with a form.

Internally Angular creates FormControls and registers them with an NgForm directive that Angular
attached to the <form> tag. Each FormControl is registered under the name we assigned to the name attribute.
We'll talk about NgForm later in this chapter.

Let's add similar [(ngModel)] bindings and name attributes to Alter Ego and Hero Power.
We'll ditch the input box binding message
and add a new binding at the top to the component's diagnostic property.
Then we can confirm that two-way data binding works for the entire Hero model.

After revision the core of our form should have three [(ngModel)] bindings and name attributes that
look much like this:

app/hero-form.component.html (excerpt)
{{diagnostic}}
<div class="form-group">
 <label for="name">Name</label>
 <input type="text" class="form-control" id="name"
 required
 [(ngModel)]="model.name" name="name">
</div>

<div class="form-group">
 <label for="alterEgo">Alter Ego</label>
 <input type="text" class="form-control" id="alterEgo"
 [(ngModel)]="model.alterEgo" name="alterEgo">
</div>

<div class="form-group">
 <label for="power">Hero Power</label>
 <select class="form-control" id="power"
 required
 [(ngModel)]="model.power" name="power">
 <option *ngFor="let p of powers" [value]="p">{{p}}</option>
 </select>
</div>

	Each input element has an id property that is used by the label element's for attribute
to match the label to it's input control.

	Each input element has a name property that is required by Angular Forms to register the control with the form.

If we ran the app right now and changed every Hero model property, the form might display like this:

[image: ngModel in super action]The diagnostic near the top of the form
confirms that all of our changes are reflected in the model.

Delete the {{diagnostic}} binding at the top as it has served its purpose.

Inside [(ngModel)]

This section is an optional deep dive into [(ngModel)]. Not interested? Skip ahead!

The punctuation in the binding syntax, [()], is a good clue to what's going on.

In a Property Binding, a value flows from the model to a target property on screen.
We identify that target property by surrounding its name in brackets, [].
This is a one-way data binding from the model to the view.

In an Event Binding, we flow the value from the target property on screen to the model.
We identify that target property by surrounding its name in parentheses, ().
This is a one-way data binding in the opposite direction from the view to the model.

No wonder Angular chose to combine the punctuation as [()]
to signify a two-way data binding and a flow of data in both directions.

In fact, we can break the NgModel binding into its two separate modes
as we do in this re-write of the "Name" <input> binding:

app/hero-form.component.html (excerpt)
<input type="text" class="form-control" id="name"
 required
 [ngModel]="model.name" name="name"
 (ngModelChange)="model.name = $event" >
 TODO: remove this: {{model.name}}

The Property Binding should feel familiar. The Event Binding might seem strange.

The ngModelChange is not an <input> element event.
It is actually an event property of the NgModel directive.
When Angular sees a binding target in the form [(x)],
it expects the x directive to have an x input property and an xChange output property.

The other oddity is the template expression, model.name = $event.
We're used to seeing an $event object coming from a DOM event.
The ngModelChange property doesn't produce a DOM event; it's an Angular EventEmitter
property that returns the input box value when it fires — which is precisely what
we should assign to the model's name property.

Nice to know but is it practical? We almost always prefer [(ngModel)].
We might split the binding if we had to do something special in
the event handling such as debounce or throttle the key strokes.

Learn more about NgModel and other template syntax in the
Template Syntax chapter.

Track change-state and validity with ngModel

A form isn't just about data binding. We'd also like to know the state of the controls on our form.

Using ngModel in a form gives us more than just two way data binding. It also tells us if the user touched the control, if the value changed, or if the value became invalid.

The NgModel directive doesn't just track state; it updates the control with special Angular CSS classes that reflect the state.
We can leverage those class names to change the appearance of the
control and make messages appear or disappear.

	State	Class if true	Class if false
	Control has been visited	ng-touched	ng-untouched
	Control's value has changed	ng-dirty	ng-pristine
	Control's value is valid	ng-valid	ng-invalid

Let's add a temporary template reference variable named spy
to the "Name" <input> tag and use the spy to display those classes.

app/hero-form.component.html (excerpt)
<input type="text" class="form-control" id="name"
 required
 [(ngModel)]="model.name" name="name"
 #spy >

TODO: remove this: {{spy.className}}
Now run the app and focus on the Name input box.
Follow the next four steps precisely

	Look but don't touch

	Click in the input box, then click outside the text input box

	Add slashes to the end of the name

	Erase the name

The actions and effects are as follows:

[image: Control State Transition]We should be able to see the following four sets of class names and their transitions:

[image: Control State Transitions]The (ng-valid | ng-invalid) pair are most interesting to us. We want to send a
strong visual signal when the data are invalid and we want to mark required fields.
So we add custom CSS for visual feedback.

Delete the #spy template reference variable and TODO as they have served their purpose.

Add Custom CSS for Visual Feedback

We realize we can mark required fields and invalid data at the same time with a colored bar
on the left of the input box:

[image: Invalid Form]We achieve this effect by adding two styles to a new forms.css file
that we add to our project as a sibling to index.html.

forms.css
.ng-valid[required], .ng-valid.required {
 border-left: 5px solid #42A948; /* green */
}

.ng-invalid:not(form) {
 border-left: 5px solid #a94442; /* red */
}
These styles select for the two Angular validity classes and the HTML 5 "required" attribute.

We update the <head> of the index.html to include this style sheet.

index.html (excerpt)
<link rel="stylesheet" href="styles.css">
<link rel="stylesheet" href="forms.css">
Show and Hide Validation Error messages

We can do better.

The "Name" input box is required. Clearing it turns the bar red. That says something is wrong but we
don't know what is wrong or what to do about it.
We can leverage the ng-invalid class to reveal a helpful message.

Here's the way it should look when the user deletes the name:

[image: Name required]To achieve this effect we extend the <input> tag with

	a template reference variable

	the "is required" message in a nearby <div> which we'll display only if the control is invalid.

Here's how we do it for the name input box:

app/hero-form.component.html (excerpt)
 <label for="name">Name</label>
 <input type="text" class="form-control" id="name"
 required
 [(ngModel)]="model.name" name="name"
 #name="ngModel" >
 <div [hidden]="name.valid || name.pristine"
 class="alert alert-danger">
 Name is required
 </div>
We need a template reference variable to access the input box's Angular control from within the template.
Here we created a variable called name and gave it the value "ngModel".

Why "ngModel"?
A directive's exportAs property
tells Angular how to link the reference variable to the directive.
We set name to ngModel because the ngModel directive's exportAs property happens to be "ngModel".

Now we can control visibility of the "name" error message by binding properties of the name control to the message <div> element's hidden property.

app/hero-form.component.html (excerpt)
<div [hidden]="name.valid || name.pristine"
 class="alert alert-danger">
In this example, we hide the message when the control is valid or pristine;
pristine means the user hasn't changed the value since it was displayed in this form.

This user experience is the developer's choice. Some folks want to see the message at all times.
If we ignore the pristine state, we would hide the message only when the value is valid.
If we arrive in this component with a new (blank) hero or an invalid hero,
we'll see the error message immediately, before we've done anything.

Some folks find that behavior disconcerting. They only want to see the message when the user makes an invalid change.
Hiding the message while the control is "pristine" achieves that goal.
We'll see the significance of this choice when we add a new hero to the form.

The Hero Alter Ego is optional so we can leave that be.

Hero Power selection is required.
We can add the same kind of error handling to the <select> if we want
but it's not imperative because the selection box already constrains the
power to valid value.

Add a hero and reset the form

We'd like to add a new hero in this form.
We place a "New Hero" button at the bottom of the form and bind its click event to a component method.

app/hero-form.component.html (New Hero button)
<button type="button" class="btn btn-default" (click)="newHero()">New Hero</button>
app/hero-form.component.ts (New Hero method - v1)
newHero() {
 this.model = new Hero(42, '', '');
}
Run the application again, click the New Hero button, and the form clears.
The required bars to the left of the input box are red, indicating invalid name and power properties.
That's understandable as these are required fields.
The error messages are hidden because the form is pristine; we haven't changed anything yet.

Enter a name and click New Hero again.
This time we see an error message! Why? We don't want that when we display a new (empty) hero.

Inspecting the element in the browser tools reveals that the name input box is no longer pristine.
Replacing the hero did not restore the pristine state of the control.

Upon reflection, we realize that Angular cannot distinguish between
replacing the entire hero and clearing the name property programmatically.
Angular makes no assumptions and leaves the control in its current, dirty state.

We'll have to reset the form controls manually with a small trick.
We add an active flag to the component, initialized to true. When we add a new hero,
we toggle active false and then immediately back to true with a quick setTimeout.

app/hero-form.component.ts (New Hero method - final)
 active = true;

 newHero() {
 this.model = new Hero(42, '', '');
 this.active = false;
 setTimeout(() => this.active = true, 0);
 }
Then we bind the form element to this active flag.

app/hero-form.component.html (Form tag)
<form *ngIf="active">
With NgIf bound to the active flag,
clicking "New Hero" removes the form from the DOM and recreates it in a blink of an eye.
The re-created form is in a pristine state. The error message is hidden.

This is a temporary workaround while we await a proper form reset feature.

Submit the form with ngSubmit

The user should be able to submit this form after filling it in.
The Submit button at the bottom of the form
does nothing on its own but it will
trigger a form submit because of its type (type="submit").

A "form submit" is useless at the moment.
To make it useful, we'll update the <form> tag with another Angular directive, NgSubmit,
and bind it to the HeroFormComponent.submit() method with an event binding

<form *ngIf="active" (ngSubmit)="onSubmit()" #heroForm="ngForm">
We slipped in something extra there at the end! We defined a
template reference variable, #heroForm, and initialized it with the value, "ngForm".

The variable heroForm is now a reference to the NgForm directive that governs the form as a whole.

The NgForm directive

What NgForm directive? We didn't add an NgForm directive!

Angular did. Angular creates and attaches an NgForm directive to the <form> tag automatically.

The NgForm directive supplements the form element with additional features.
It holds the controls we created for the elements with ngModel directive and name attribute
and monitors their properties including their validity.
It also has its own valid property which is true only if every contained
control is valid.

Later in the template we bind the button's disabled property to the form's over-all validity via
the heroForm variable. Here's that bit of markup:

<button type="submit" class="btn btn-default" [disabled]="!heroForm.form.valid">Submit</button>
Re-run the application. The form opens in a valid state and the button is enabled.

Now delete the Name. We violate the "name required" rule which
is duly noted in our error message as before. And now the Submit button is also disabled.

Not impressed? Think about it for a moment. What would we have to do to
wire the button's enable/disabled state to the form's validity without Angular's help?

For us, it was as simple as

	Define a template reference variable on the (enhanced) form element

	Reference that variable in a button some 50 lines away.

Toggle two form regions (extra credit)

Submitting the form isn't terribly dramatic at the moment.

An unsurprising observation for a demo. To be honest,
jazzing it up won't teach us anything new about forms.
But this is an opportunity to exercise some of our newly won
binding skills.
If you're not interested, you can skip to the chapter's conclusion
and not miss a thing.

Let's do something more strikingly visual.
Let's hide the data entry area and display something else.

Start by wrapping the form in a <div> and bind
its hidden property to the HeroFormComponent.submitted property.

app/hero-form.component.html (excerpt)
 <div [hidden]="submitted">
 <h1>Hero Form</h1>
 <form *ngIf="active" (ngSubmit)="onSubmit()" #heroForm="ngForm">

 <!-- ... all of the form ... -->

 </form>
 </div>
The main form is visible from the start because the
the submitted property is false until we submit the form,
as this fragment from the HeroFormComponent reminds us:

submitted = false;

onSubmit() { this.submitted = true; }
When we click the Submit button, the submitted flag becomes true and the form disappears
as planned.

Now we need to show something else while the form is in the submitted state.
Add the following block of HTML below the <div> wrapper we just wrote:

app/hero-form.component.html (excerpt)
<div [hidden]="!submitted">
 <h2>You submitted the following:</h2>
 <div class="row">
 <div class="col-xs-3">Name</div>
 <div class="col-xs-9 pull-left">{{ model.name }}</div>
 </div>
 <div class="row">
 <div class="col-xs-3">Alter Ego</div>
 <div class="col-xs-9 pull-left">{{ model.alterEgo }}</div>
 </div>
 <div class="row">
 <div class="col-xs-3">Power</div>
 <div class="col-xs-9 pull-left">{{ model.power }}</div>
 </div>

 <button class="btn btn-default" (click)="submitted=false">Edit</button>
</div>
There's our hero again, displayed read-only with interpolation bindings.
This slug of HTML only appears while the component is in the submitted state.

We added an Edit button whose click event is bound to an expression
that clears the submitted flag.

When we click it, this block disappears and the editable form reappears.

That's as much drama as we can muster for now.

Conclusion

The Angular form techniques discussed in this chapter take
advantage of the following framework features to provide support for data modification, validation and more:

	An Angular HTML form template.

	A form component class with a Component decorator.

	The ngSubmit directive for handling the form submission.

	Template reference variables such as #heroForm, #name and #power.

	The [(ngModel)] syntax and a name attribute for two-way data binding, validation and change tracking.

	The reference variable’s valid property on input controls to check if a control is valid and show/hide error messages.

	Controlling the submit button's enabled state by binding to NgForm validity.

	Custom CSS classes that provide visual feedback to users about invalid controls.

Our final project folder structure should look like this:

angular2-forms
app
app.component.ts
app.module.ts
hero.ts
hero-form.component.html
hero-form.component.ts
main.ts

node_modules ...
typings ...
index.html
package.json
tsconfig.json
typings.json

Here’s the final version of the source:

import { Component } from '@angular/core';

import { Hero } from './hero';

@Component({
 selector: 'hero-form',
 templateUrl: 'app/hero-form.component.html'
})
export class HeroFormComponent {

 powers = ['Really Smart', 'Super Flexible',
 'Super Hot', 'Weather Changer'];

 model = new Hero(18, 'Dr IQ', this.powers[0], 'Chuck Overstreet');

 submitted = false;

 onSubmit() { this.submitted = true; }

 // Reset the form with a new hero AND restore 'pristine' class state
 // by toggling 'active' flag which causes the form
 // to be removed/re-added in a tick via NgIf
 // TODO: Workaround until NgForm has a reset method (#6822)
 active = true;

 newHero() {
 this.model = new Hero(42, '', '');
 this.active = false;
 setTimeout(() => this.active = true, 0);
 }
}
<div class="container">
 <div [hidden]="submitted">
 <h1>Hero Form</h1>
 <form *ngIf="active" (ngSubmit)="onSubmit()" #heroForm="ngForm">
 <div class="form-group">
 <label for="name">Name</label>
 <input type="text" class="form-control" id="name"
 required
 [(ngModel)]="model.name" name="name"
 #name="ngModel" >
 <div [hidden]="name.valid || name.pristine"
 class="alert alert-danger">
 Name is required
 </div>
 </div>

 <div class="form-group">
 <label for="alterEgo">Alter Ego</label>
 <input type="text" class="form-control" id="alterEgo"
 [(ngModel)]="model.alterEgo" name="alterEgo" >
 </div>

 <div class="form-group">
 <label for="power">Hero Power</label>
 <select class="form-control" id="power"
 required
 [(ngModel)]="model.power" name="power"
 #power="ngModel" >
 <option *ngFor="let p of powers" [value]="p">{{p}}</option>
 </select>
 <div [hidden]="power.valid || power.pristine" class="alert alert-danger">
 Power is required
 </div>
 </div>

 <button type="submit" class="btn btn-default" [disabled]="!heroForm.form.valid">Submit</button>

 <button type="button" class="btn btn-default" (click)="newHero()">New Hero</button>

 </form>
 </div>

 <div [hidden]="!submitted">
 <h2>You submitted the following:</h2>
 <div class="row">
 <div class="col-xs-3">Name</div>
 <div class="col-xs-9 pull-left">{{ model.name }}</div>
 </div>
 <div class="row">
 <div class="col-xs-3">Alter Ego</div>
 <div class="col-xs-9 pull-left">{{ model.alterEgo }}</div>
 </div>
 <div class="row">
 <div class="col-xs-3">Power</div>
 <div class="col-xs-9 pull-left">{{ model.power }}</div>
 </div>

 <button class="btn btn-default" (click)="submitted=false">Edit</button>
 </div>
</div>
export class Hero {

 constructor(
 public id: number,
 public name: string,
 public power: string,
 public alterEgo?: string
) { }

}
import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';
import { FormsModule } from '@angular/forms';

import { AppComponent } from './app.component';
import { HeroFormComponent } from './hero-form.component';

@NgModule({
 imports: [
 BrowserModule,
 FormsModule
],
 declarations: [
 AppComponent,
 HeroFormComponent
],
 bootstrap: [AppComponent]
})
export class AppModule { }
import { Component } from '@angular/core';

@Component({
 selector: 'my-app',
 template: '<hero-form></hero-form>'
})
export class AppComponent { }
import { platformBrowserDynamic } from '@angular/platform-browser-dynamic';
import { AppModule } from './app.module';

// Compiles the module (asynchronously) with the runtime compiler
// which generates a compiled module factory in memory.
// Then bootstraps with that factory, targeting the browser.
platformBrowserDynamic().bootstrapModule(AppModule);
<html>
 <head>
 <title>Hero Form</title>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1">

 <link rel="stylesheet"
 href="node_modules/bootstrap/dist/css/bootstrap.min.css">
 <link rel="stylesheet" href="styles.css">
 <link rel="stylesheet" href="forms.css">

 <!-- Polyfill(s) for older browsers -->
 <script src="node_modules/core-js/client/shim.min.js"></script>

 <script src="node_modules/zone.js/dist/zone.js"></script>
 <script src="node_modules/reflect-metadata/Reflect.js"></script>
 <script src="node_modules/systemjs/dist/system.src.js"></script>

 <script src="systemjs.config.js"></script>
 <script>
 System.import('app').catch(function(err){ console.error(err); });
 </script>
 </head>

 <body>
 <my-app>Loading...</my-app>
 </body>

</html>
.ng-valid[required], .ng-valid.required {
 border-left: 5px solid #42A948; /* green */
}

.ng-invalid:not(form) {
 border-left: 5px solid #a94442; /* red */
}

6. Dependency Injection
Dependency injection is an important application design pattern.
Angular has its own dependency injection framework, and
we really can't build an Angular application without it.
It's used so widely that almost everyone just calls it DI.

In this chapter we'll learn what DI is and why we want it.
Then we'll learn how to use it in an Angular app.

	Why dependency injection?

	Angular dependency injection

	Injector providers

	Dependency injection tokens

	Summary

Run the .

Why dependency injection?

Let's start with the following code.

app/car/car.ts (without DI)
export class Car {

 public engine: Engine;
 public tires: Tires;
 public description = 'No DI';

 constructor() {
 this.engine = new Engine();
 this.tires = new Tires();
 }

 // Method using the engine and tires
 drive() {
 return `${this.description} car with ` +
 `${this.engine.cylinders} cylinders and ${this.tires.make} tires.`;
 }
}
Our Car creates everything it needs inside its constructor.
What's the problem?
The problem is that our Car class is brittle, inflexible, and hard to test.

Our Car needs an engine and tires. Instead of asking for them,
the Car constructor instantiates its own copies from
the very specific classes Engine and Tires.

What if the Engine class evolves and its constructor requires a parameter?
Our Car is broken and stays broken until we rewrite it along the lines of
this.engine = new Engine(theNewParameter).
We didn't care about Engine constructor parameters when we first wrote Car.
We don't really care about them now.
But we'll have to start caring because
when the definition of Engine changes, our Car class must change.
That makes Car brittle.

What if we want to put a different brand of tires on our Car? Too bad.
We're locked into whatever brand the Tires class creates. That makes our Car inflexible.

Right now each new car gets its own engine. It can't share an engine with other cars.
While that makes sense for an automobile engine,
we can think of other dependencies that should be shared, such as the onboard
wireless connection to the manufacturer's service center. Our Car lacks the flexibility
to share services that have been created previously for other consumers.

When we write tests for our Car we're at the mercy of its hidden dependencies.
Is it even possible to create a new Engine in a test environment?
What does Engineitself depend upon? What does that dependency depend on?
Will a new instance of Engine make an asynchronous call to the server?
We certainly don't want that going on during our tests.

What if our Car should flash a warning signal when tire pressure is low?
How do we confirm that it actually does flash a warning
if we can't swap in low-pressure tires during the test?

We have no control over the car's hidden dependencies.
When we can't control the dependencies, a class becomes difficult to test.

How can we make Car more robust, flexible, and testable?

That's super easy. We change our Car constructor to a version with DI:

public description = 'DI';

constructor(public engine: Engine, public tires: Tires) { }
public engine: Engine;
public tires: Tires;
public description = 'No DI';

constructor() {
 this.engine = new Engine();
 this.tires = new Tires();
}
See what happened? We moved the definition of the dependencies to the constructor.
Our Car class no longer creates an engine or tires.
It just consumes them.

We also leveraged TypeScript's constructor syntax for declaring
parameters and properties simultaneously.

Now we create a car by passing the engine and tires to the constructor.

// Simple car with 4 cylinders and Flintstone tires.
let car = new Car(new Engine(), new Tires());
How cool is that?
The definition of the engine and tire dependencies are
decoupled from the Car class itself.
We can pass in any kind of engine or tires we like, as long as they
conform to the general API requirements of an engine or tires.

If someone extends the Engine class, that is not Car's problem.

The consumer of Car has the problem. The consumer must update the car creation code to
something like this:

class Engine2 {
 constructor(public cylinders: number) { }
}
// Super car with 12 cylinders and Flintstone tires.
let bigCylinders = 12;
let car = new Car(new Engine2(bigCylinders), new Tires());
The critical point is this: Car itself did not have to change.
We'll take care of the consumer's problem soon enough.

The Car class is much easier to test because we are in complete control
of its dependencies.
We can pass mocks to the constructor that do exactly what we want them to do
during each test:

class MockEngine extends Engine { cylinders = 8; }
class MockTires extends Tires { make = 'YokoGoodStone'; }

// Test car with 8 cylinders and YokoGoodStone tires.
let car = new Car(new MockEngine(), new MockTires());
We just learned what dependency injection is.

It's a coding pattern in which a class receives its dependencies from external
sources rather than creating them itself.

Cool! But what about that poor consumer?
Anyone who wants a Car must now
create all three parts: the Car, Engine, and Tires.
The Car class shed its problems at the consumer's expense.
We need something that takes care of assembling these parts for us.

We could write a giant class to do that:

app/car/car-factory.ts
import { Engine, Tires, Car } from './car';

// BAD pattern!
export class CarFactory {
 createCar() {
 let car = new Car(this.createEngine(), this.createTires());
 car.description = 'Factory';
 return car;
 }

 createEngine() {
 return new Engine();
 }

 createTires() {
 return new Tires();
 }
}
It's not so bad now with only three creation methods.
But maintaining it will be hairy as the application grows.
This factory is going to become a huge spiderweb of
interdependent factory methods!

Wouldn't it be nice if we could simply list the things we want to build without
having to define which dependency gets injected into what?

This is where the dependency injection framework comes into play.
Imagine the framework had something called an injector.
We register some classes with this injector, and it figures out how to create them.

When we need a Car, we simply ask the injector to get it for us and we're good to go.

let car = injector.get(Car);
Everyone wins. The Car knows nothing about creating an Engine or Tires.
The consumer knows nothing about creating a Car.
We don't have a gigantic factory class to maintain.
Both Car and consumer simply ask for what they need and the injector delivers.

This is what a dependency injection framework is all about.

Now that we know what dependency injection is and appreciate its benefits,
let's see how it is implemented in Angular.

Angular dependency injection

Angular ships with its own dependency injection framework. This framework can also be used
as a standalone module by other applications and frameworks.

That sounds nice. What does it do for us when building components in Angular?
Let's see, one step at a time.

We'll begin with a simplified version of the HeroesComponent
that we built in the The Tour of Heroes.

import { Component } from '@angular/core';

@Component({
 selector: 'my-heroes',
 template: `
 <h2>Heroes</h2>
 <hero-list></hero-list>
 `
})
export class HeroesComponent { }
import { Component } from '@angular/core';

import { HEROES } from './mock-heroes';

@Component({
 selector: 'hero-list',
 template: `
 <div *ngFor="let hero of heroes">
 {{hero.id}} - {{hero.name}}
 </div>
 `
})
export class HeroListComponent {
 heroes = HEROES;
}
export class Hero {
 id: number;
 name: string;
 isSecret = false;
}
import { Hero } from './hero';

export var HEROES: Hero[] = [
 { id: 11, isSecret: false, name: 'Mr. Nice' },
 { id: 12, isSecret: false, name: 'Narco' },
 { id: 13, isSecret: false, name: 'Bombasto' },
 { id: 14, isSecret: false, name: 'Celeritas' },
 { id: 15, isSecret: false, name: 'Magneta' },
 { id: 16, isSecret: false, name: 'RubberMan' },
 { id: 17, isSecret: false, name: 'Dynama' },
 { id: 18, isSecret: true, name: 'Dr IQ' },
 { id: 19, isSecret: true, name: 'Magma' },
 { id: 20, isSecret: true, name: 'Tornado' }
];
The HeroesComponent is the root component of the Heroes feature area.
It governs all the child components of this area.
Our stripped down version has only one child, HeroListComponent,
which displays a list of heroes.

Right now HeroListComponent gets heroes from HEROES, an in-memory collection
defined in another file.
That may suffice in the early stages of development, but it's far from ideal.
As soon as we try to test this component or want to get our heroes data from a remote server,
we'll have to change the implementation of heroes and
fix every other use of the HEROES mock data.

Let's make a service that hides how we get hero data.

Given that the service is a
separate concern,
we suggest that you
write the service code in its own file.

See this note for details.

app/heroes/hero.service.ts
import { Injectable } from '@angular/core';

import { HEROES } from './mock-heroes';

@Injectable()
export class HeroService {
 getHeroes() { return HEROES; }
}
Our HeroService exposes a getHeroes method that returns
the same mock data as before, but none of its consumers need to know that.

Notice the @Injectable() decorator above the service class.
We'll discuss its purpose shortly.

We aren't even pretending this is a real service.
If we were actually getting data from a remote server, the API would have to be
asynchronous, perhaps returning a Promise.
We'd also have to rewrite the way components consume our service.
This is important in general, but not to our current story.

A service is nothing more than a class in Angular 2.
It remains nothing more than a class until we register it with an Angular injector.

Configuring the injector

We don't have to create an Angular injector.
Angular creates an application-wide injector for us during the bootstrap process.

app/main.ts (excerpt)
platformBrowserDynamic().bootstrapModule(AppModule);
We do have to configure the injector by registering the providers
that create the services our application requires.
We'll explain what providers are later in this chapter.

We can either register a provider within an NgModule or in application components

Registering providers in an NgModule

Here's our AppModule where we register a Logger, an UserService, and an APP_CONFIG provider.

app/app.module.ts
@NgModule({
 imports: [
 BrowserModule
],
 declarations: [
 AppComponent,
 CarComponent,
 HeroesComponent,
 HeroListComponent,
 InjectorComponent,
 TestComponent,
 ProvidersComponent,
 Provider1Component,
 Provider3Component,
 Provider4Component,
 Provider5Component,
 Provider6aComponent,
 Provider6bComponent,
 Provider7Component,
 Provider8Component,
 Provider9Component,
 Provider10Component,
],
 providers: [
 UserService,
 { provide: APP_CONFIG, useValue: HERO_DI_CONFIG }
],
 bootstrap: [AppComponent, ProvidersComponent]
})
export class AppModule { }
Registering providers in a component

Here's a revised HeroesComponent that registers the HeroService.

app/heroes/heroes.component.ts
import { Component } from '@angular/core';

import { HeroService } from './hero.service';

@Component({
 selector: 'my-heroes',
 providers: [HeroService],
 template: `
 <h2>Heroes</h2>
 <hero-list></hero-list>
 `
})
export class HeroesComponent { }
When to use the NgModule and when an application component?

On the one hand, a provider in an NgModule is registered in the root injector. That means that every provider
registered within an NgModule will be accessible in the entire application.

On the other hand, a provider registered in an application component is available only on that component and all its children.

We want the APP_CONFIG service to be available all across the application, but a HeroService is only used within the Heroes
feature area — and nowhere else. —

Read also Should I add providers to the root AppModule or the root AppComponent? at the NgModule chapter.

Preparing the HeroListComponent for injection

The HeroListComponent should get heroes from the injected HeroService.
Per the dependency injection pattern, the component must ask for the service in its
constructor, as we explained earlier.
It's a small change:

import { Component } from '@angular/core';

import { Hero } from './hero';
import { HeroService } from './hero.service';

@Component({
 selector: 'hero-list',
 template: `
 <div *ngFor="let hero of heroes">
 {{hero.id}} - {{hero.name}}
 </div>
 `
})
export class HeroListComponent {
 heroes: Hero[];

 constructor(heroService: HeroService) {
 this.heroes = heroService.getHeroes();
 }
}
import { Component } from '@angular/core';

import { HEROES } from './mock-heroes';

@Component({
 selector: 'hero-list',
 template: `
 <div *ngFor="let hero of heroes">
 {{hero.id}} - {{hero.name}}
 </div>
 `
})
export class HeroListComponent {
 heroes = HEROES;
}
Focus on the constructor

Adding a parameter to the constructor isn't all that's happening here.

constructor(heroService: HeroService) {
 this.heroes = heroService.getHeroes();
}
Note that the constructor parameter has the type HeroService, and that
the HeroListComponent class has an @Component decorator
(scroll up to confirm that fact).
Also recall that the parent component (HeroesComponent)
has providers information for HeroService.

The constructor parameter type, the @Component decorator,
and the parent's providers information combine to tell the
Angular injector to inject an instance of
HeroService whenever it creates a new HeroListComponent.

Implicit injector creation

When we introduced the idea of an injector above, we showed how to
use it to create a new Car. Here we also show how such an injector
would be explicitly created:

 injector = ReflectiveInjector.resolveAndCreate([Car, Engine, Tires]);
 let car = injector.get(Car);
We won't find code like that in the Tour of Heroes or any of our other samples.
We could write code that explicitly creates an injector if we had to, but we rarely do.
Angular takes care of creating and calling injectors
when it creates components for us — whether through HTML markup, as in <hero-list></hero-list>,
or after navigating to a component with the router.
If we let Angular do its job, we'll enjoy the benefits of automated dependency injection.

Singleton services

Dependencies are singletons within the scope of an injector.
In our example, a single HeroService instance is shared among the
HeroesComponent and its HeroListComponent children.

However, Angular DI is an hierarchical injection
system, which means that nested injectors can create their own service instances.
Learn more about that in the Hierarchical Injectors chapter.

Testing the component

We emphasized earlier that designing a class for dependency injection makes the class easier to test.
Listing dependencies as constructor parameters may be all we need to test application parts effectively.

For example, we can create a new HeroListComponent with a mock service that we can manipulate
under test:

let expectedHeroes = [{name: 'A'}, {name: 'B'}]
let mockService = <HeroService> {getHeroes: () => expectedHeroes }

it('should have heroes when HeroListComponent created', () => {
 let hlc = new HeroListComponent(mockService);
 expect(hlc.heroes.length).toEqual(expectedHeroes.length);
});
When the service needs a service

Our HeroService is very simple. It doesn't have any dependencies of its own.

What if it had a dependency? What if it reported its activities through a logging service?
We'd apply the same constructor injection pattern,
adding a constructor that takes a Logger parameter.

Here is the revision compared to the original.

import { Injectable } from '@angular/core';

import { HEROES } from './mock-heroes';
import { Logger } from '../logger.service';

@Injectable()
export class HeroService {

 constructor(private logger: Logger) { }

 getHeroes() {
 this.logger.log('Getting heroes ...');
 return HEROES;
 }
}
import { Injectable } from '@angular/core';

import { HEROES } from './mock-heroes';

@Injectable()
export class HeroService {
 getHeroes() { return HEROES; }
}
The constructor now asks for an injected instance of a Logger and stores it in a private property called logger.
We call that property within our getHeroes method when anyone asks for heroes.

Why @Injectable()?
@Injectable() marks a class as available to an
injector for instantiation. Generally speaking, an injector will report an
error when trying to instantiate a class that is not marked as
@Injectable().

As it happens, we could have omitted @Injectable() from our first
version of HeroService because it had no injected parameters.
But we must have it now that our service has an injected dependency.
We need it because Angular requires constructor parameter metadata
in order to inject a Logger.

Suggestion: add @Injectable() to every service classWe recommend adding @Injectable() to every service class, even those that don't have dependencies
and, therefore, do not technically require it. Here's why:

	Future proofing: No need to remember @Injectable() when we add a dependency later.
	Consistency: All services follow the same rules, and we don't have to wonder why a decorator is missing.

Injectors are also responsible for instantiating components
like HeroesComponent. Why haven't we marked HeroesComponent as
@Injectable()?

We can add it if we really want to. It isn't necessary because the
HeroesComponent is already marked with @Component, and this
decorator class (like @Directive and @Pipe, which we'll learn about later)
is a subtype of InjectableMetadata. It is in
fact InjectableMetadata decorators that
identify a class as a target for instantiation by an injector.

At runtime, injectors can read class metadata in the transpiled JavaScript code
and use the constructor parameter type information
to determine what things to inject.

Not every JavaScript class has metadata.
The TypeScript compiler discards metadata by default.
If the emitDecoratorMetadata compiler option is true
(as it should be in the tsconfig.json),
the compiler adds the metadata to the generated JavaScript
for every class with at least one decorator.

While any decorator will trigger this effect, mark the service class with the
InjectableMetadata decorator
to make the intent clear.

Always include the parenthesesAlways write @Injectable(), not just @Injectable.
Our application will fail mysteriously if we forget the parentheses.

Creating and registering a logger service

We're injecting a logger into our HeroService in two steps:

	Create the logger service.

	Register it with the application.

Our logger service is quite simple:

app/logger.service.ts
import { Injectable } from '@angular/core';

@Injectable()
export class Logger {
 logs: string[] = []; // capture logs for testing

 log(message: string) {
 this.logs.push(message);
 console.log(message);
 }
}
We're likely to need the same logger service everywhere in our application,
so we put it in the project's app folder, and
we register it in the providers array of the metadata for our application module, AppModule.

app/app.module.ts (excerpt) (providers-logger)
providers: [Logger]
If we forget to register the logger, Angular throws an exception when it first looks for the logger:

EXCEPTION: No provider for Logger! (HeroListComponent -> HeroService -> Logger)
That's Angular telling us that the dependency injector couldn't find the provider for the logger.
It needed that provider to create a Logger to inject into a new
HeroService, which it needed to
create and inject into a new HeroListComponent.

The chain of creations started with the Logger provider. Providers are the subject of our next section.

Injector providers

A provider provides the concrete, runtime version of a dependency value.
The injector relies on providers to create instances of the services
that the injector injects into components and other services.

We must register a service provider with the injector, or it won't know how to create the service.

Earlier we registered the Logger service in the providers array of the metadata for the AppModule like this:

providers: [Logger]
There are many ways to provide something that looks and behaves like a Logger.
The Logger class itself is an obvious and natural provider.
But it's not the only way.

We can configure the injector with alternative providers that can deliver an object that behaves like a Logger.
We could provide a substitute class. We could provide a logger-like object.
We could give it a provider that calls a logger factory function.
Any of these approaches might be a good choice under the right circumstances.

What matters is that the injector has a provider to go to when it needs a Logger.

The Provider class and provide object literal

We wrote the providers array like this:

providers: [Logger]
This is actually a shorthand expression for a provider registration
using a provider object literal with two properties:

[{ provide: Logger, useClass: Logger }]
The first is the token that serves as the key for both locating a dependency value
and registering the provider.

The second is a provider definition object,
which we can think of as a recipe for creating the dependency value.
There are many ways to create dependency values ... and many ways to write a recipe.

Alternative class providers

Occasionally we'll ask a different class to provide the service.
The following code tells the injector
to return a BetterLogger when something asks for the Logger.

[{ provide: Logger, useClass: BetterLogger }]
Class provider with dependencies

Maybe an EvenBetterLogger could display the user name in the log message.
This logger gets the user from the injected UserService,
which happens also to be injected at the application level.

@Injectable()
class EvenBetterLogger extends Logger {
 constructor(private userService: UserService) { super(); }

 log(message: string) {
 let name = this.userService.user.name;
 super.log(`Message to ${name}: ${message}`);
 }
}
Configure it like we did BetterLogger.

[UserService,
 { provide: Logger, useClass: EvenBetterLogger }]
Aliased class providers

Suppose an old component depends upon an OldLogger class.
OldLogger has the same interface as the NewLogger, but for some reason
we can't update the old component to use it.

When the old component logs a message with OldLogger,
we want the singleton instance of NewLogger to handle it instead.

The dependency injector should inject that singleton instance
when a component asks for either the new or the old logger.
The OldLogger should be an alias for NewLogger.

We certainly do not want two different NewLogger instances in our app.
Unfortunately, that's what we get if we try to alias OldLogger to NewLogger with useClass.

[NewLogger,
 // Not aliased! Creates two instances of `NewLogger`
 { provide: OldLogger, useClass: NewLogger}]
The solution: alias with the useExisting option.

[NewLogger,
 // Alias OldLogger w/ reference to NewLogger
 { provide: OldLogger, useExisting: NewLogger}]
Value providers

Sometimes it's easier to provide a ready-made object rather than ask the injector to create it from a class.

// An object in the shape of the logger service
let silentLogger = {
 logs: ['Silent logger says "Shhhhh!". Provided via "useValue"'],
 log: () => {}
};
Then we register a provider with the useValue option,
which makes this object play the logger role.

[{ provide: Logger, useValue: silentLogger }]
See more useValue examples in the
Non-class dependencies and
OpaqueToken sections.

Factory providers

Sometimes we need to create the dependent value dynamically,
based on information we won't have until the last possible moment.
Maybe the information changes repeatedly in the course of the browser session.

Suppose also that the injectable service has no independent access to the source of this information.

This situation calls for a factory provider.

Let's illustrate by adding a new business requirement:
the HeroService must hide secret heroes from normal users.
Only authorized users should see secret heroes.

Like the EvenBetterLogger, the HeroService needs a fact about the user.
It needs to know if the user is authorized to see secret heroes.
That authorization can change during the course of a single application session,
as when we log in a different user.

Unlike EvenBetterLogger, we can't inject the UserService into the HeroService.
The HeroService won't have direct access to the user information to decide
who is authorized and who is not.

Why? We don't know either. Stuff like this happens.

Instead the HeroService constructor takes a boolean flag to control display of secret heroes.

app/heroes/hero.service.ts (excerpt)
constructor(
 private logger: Logger,
 private isAuthorized: boolean) { }

getHeroes() {
 let auth = this.isAuthorized ? 'authorized ' : 'unauthorized';
 this.logger.log(`Getting heroes for ${auth} user.`);
 return HEROES.filter(hero => this.isAuthorized || !hero.isSecret);
}
We can inject the Logger, but we can't inject the boolean isAuthorized.
We'll have to take over the creation of new instances of this HeroService with a factory provider.

A factory provider needs a factory function:

app/heroes/hero.service.provider.ts (excerpt)
let heroServiceFactory = (logger: Logger, userService: UserService) => {
 return new HeroService(logger, userService.user.isAuthorized);
};
Although the HeroService has no access to the UserService, our factory function does.

We inject both the Logger and the UserService into the factory provider and let the injector pass them along to the factory function:

app/heroes/hero.service.provider.ts (excerpt)
export let heroServiceProvider =
 { provide: HeroService,
 useFactory: heroServiceFactory,
 deps: [Logger, UserService]
 };
The useFactory field tells Angular that the provider is a factory function
whose implementation is the heroServiceFactory.

The deps property is an array of provider tokens.
The Logger and UserService classes serve as tokens for their own class providers.
The injector resolves these tokens and injects the corresponding services into the matching factory function parameters.

Notice that we captured the factory provider in an exported variable, heroServiceProvider.
This extra step makes the factory provider reusable.
We can register our HeroService with this variable wherever we need it.

In our sample, we need it only in the HeroesComponent,
where it replaces the previous HeroService registration in the metadata providers array.
Here we see the new and the old implementation side-by-side:

import { Component } from '@angular/core';

import { heroServiceProvider } from './hero.service.provider';

@Component({
 selector: 'my-heroes',
 template: `
 <h2>Heroes</h2>
 <hero-list></hero-list>
 `,
 providers: [heroServiceProvider]
})
export class HeroesComponent { }
import { Component } from '@angular/core';

import { HeroService } from './hero.service';

@Component({
 selector: 'my-heroes',
 providers: [HeroService],
 template: `
 <h2>Heroes</h2>
 <hero-list></hero-list>
 `
})
export class HeroesComponent { }
Dependency injection tokens

When we register a provider with an injector, we associate that provider with a dependency injection token.
The injector maintains an internal token-provider map that it references when
asked for a dependency. The token is the key to the map.

In all previous examples, the dependency value has been a class instance, and
the class type served as its own lookup key.
Here we get a HeroService directly from the injector by supplying the HeroService type as the token:

heroService: HeroService = this.injector.get(HeroService);
We have similar good fortune when we write a constructor that requires an injected class-based dependency.
We define a constructor parameter with the HeroService class type,
and Angular knows to inject the
service associated with that HeroService class token:

constructor(heroService: HeroService)
This is especially convenient when we consider that most dependency values are provided by classes.

Non-class dependencies

What if the dependency value isn't a class? Sometimes the thing we want to inject is a string, function, or object.
Applications often define configuration objects with lots of small facts
(like the title of the application or the address of a web API endpoint) but these configuration objects aren't always instances of a class.
They can be object literals such as this one:
app/app-config.ts (excerpt)
export interface AppConfig {
 apiEndpoint: string;
 title: string;
}

export const HERO_DI_CONFIG: AppConfig = {
 apiEndpoint: 'api.heroes.com',
 title: 'Dependency Injection'
};
We'd like to make this configuration object available for injection.
We know we can register an object with a value provider.

But what should we use as the token?
We don't have a class to serve as a token.
There is no AppConfig class.

TypeScript interfaces aren't valid tokens

The HERO_DI_CONFIG constant has an interface, AppConfig. Unfortunately, we
cannot use a TypeScript interface as a token:

// FAIL! Can't use interface as provider token
[{ provide: AppConfig, useValue: HERO_DI_CONFIG })]
// FAIL! Can't inject using the interface as the parameter type
constructor(private config: AppConfig){ }
That seems strange if we're used to dependency injection in strongly typed languages, where
an interface is the preferred dependency lookup key.

It's not Angular's fault. An interface is a TypeScript design-time artifact. JavaScript doesn't have interfaces.
The TypeScript interface disappears from the generated JavaScript.
There is no interface type information left for Angular to find at runtime.

OpaqueToken

One solution to choosing a provider token for non-class dependencies is
to define and use an OpaqueToken.
The definition looks like this:

import { OpaqueToken } from '@angular/core';

export let APP_CONFIG = new OpaqueToken('app.config');
We register the dependency provider using the OpaqueToken object:

providers: [{ provide: APP_CONFIG, useValue: HERO_DI_CONFIG }]
Now we can inject the configuration object into any constructor that needs it, with
the help of an @Inject decorator:

constructor(@Inject(APP_CONFIG) config: AppConfig) {
 this.title = config.title;
}
Although the AppConfig interface plays no role in dependency injection,
it supports typing of the configuration object within the class.

Or we can provide and inject the configuration object in an ngModule like AppModule.

app/app.module.ts (ngmodule-providers)
providers: [
 UserService,
 { provide: APP_CONFIG, useValue: HERO_DI_CONFIG }
],
Optional dependencies

Our HeroService requires a Logger, but what if it could get by without
a logger?
We can tell Angular that the dependency is optional by annotating the
constructor argument with @Optional():

import { Optional } from '@angular/core';
constructor(@Optional() private logger: Logger) {
 if (this.logger) {
 this.logger.log(some_message);
 }
}
When using @Optional(), our code must be prepared for a null value. If we
don't register a logger somewhere up the line, the injector will set the
value of logger to null.

Summary

We learned the basics of Angular dependency injection in this chapter.
We can register various kinds of providers,
and we know how to ask for an injected object (such as a service) by
adding a parameter to a constructor.

Angular dependency injection is more capable than we've described.
We can learn more about its advanced features, beginning with its support for
nested injectors, in the
Hierarchical Dependency Injection chapter.

Appendix: Working with injectors directly

We rarely work directly with an injector, but
here's an InjectorComponent that does.

app/injector.component.ts
@Component({
 selector: 'my-injectors',
 template: `
 <h2>Other Injections</h2>
 <div id="car">{{car.drive()}}</div>
 <div id="hero">{{hero.name}}</div>
 <div id="rodent">{{rodent}}</div>
 `,
 providers: [Car, Engine, Tires, heroServiceProvider, Logger]
})
export class InjectorComponent {
 car: Car = this.injector.get(Car);

 heroService: HeroService = this.injector.get(HeroService);
 hero: Hero = this.heroService.getHeroes()[0];

 constructor(private injector: Injector) { }

 get rodent() {
 let rousDontExist = `R.O.U.S.'s? I don't think they exist!`;
 return this.injector.get(ROUS, rousDontExist);
 }
}
An Injector is itself an injectable service.

In this example, Angular injects the component's own Injector into the component's constructor.
The component then asks the injected injector for the services it wants.

Note that the services themselves are not injected into the component.
They are retrieved by calling injector.get.

The get method throws an error if it can't resolve the requested service.
We can call get with a second parameter (the value to return if the service is not found)
instead, which we do in one case
to retrieve a service (ROUS) that isn't registered with this or any ancestor injector.

The technique we just described is an example of the
service locator pattern.

We avoid this technique unless we genuinely need it.
It encourages a careless grab-bag approach such as we see here.
It's difficult to explain, understand, and test.
We can't know by inspecting the constructor what this class requires or what it will do.
It could acquire services from any ancestor component, not just its own.
We're forced to spelunk the implementation to discover what it does.

Framework developers may take this approach when they
must acquire services generically and dynamically.

Appendix: Why we recommend one class per file

Having multiple classes in the same file is confusing and best avoided.
Developers expect one class per file. Keep them happy.

If we scorn this advice and, say,
combine our HeroService class with the HeroesComponent in the same file,
define the component last!
If we define the component before the service,
we'll get a runtime null reference error.

We actually can define the component first with the help of the forwardRef() method as explained
in this blog post.
But why flirt with trouble?
Avoid the problem altogether by defining components and services in separate files.

7. Template Syntax
Our Angular application manages what the user sees and can do, achieving this through the interaction of a Component class instance (the component) and its user-facing template.

Many of us are familiar with the component/template duality from our experience with model-view-controller (MVC) or model-view-viewmodel (MVVM). In Angular, the component plays the part of the controller/viewmodel, and the template represents the view.

Let’s find out what it takes to write a template for our view. We’ll cover these basic elements of template syntax:

	HTML

	Interpolation

	Template expressions

	Template statements

	Binding syntax

	Property binding

	Attribute, class, and style bindings

	Event binding

	Two-way data binding with NgModel

	Built-in directives
	NgClass

	NgStyle

	NgIf

	NgSwitch

	NgFor

	* and <template>

	Template reference variables

	Input and output properties

	Template expression operators
	pipe

	safe navigation operator (?.)

The
demonstrates all of the syntax and code snippets described in this chapter.

HTML

HTML is the language of the Angular template. Our QuickStart application has a template that is pure HTML:

Almost all HTML syntax is valid template syntax. The <script> element is a notable exception; it is forbidden, eliminating the risk of script injection attacks. (In practice, <script> is simply ignored.)

Some legal HTML doesn’t make much sense in a template. The <html>, <body>, and <base> elements have no useful role in our repertoire. Pretty much everything else is fair game.

We can extend the HTML vocabulary of our templates with components and directives that appear as new elements and attributes. In the following sections we are going to learn how to get and set DOM (Document Object Model) values dynamically through data binding.

Let’s turn to the first form of data binding — interpolation — to see how much richer template HTML can be.

Interpolation

We met the double-curly braces of interpolation, {{ and }}, early in our Angular education.

<p>My current hero is {{currentHero.firstName}}</p>
We use interpolation to weave calculated strings into the text between HTML element tags and within attribute assignments.

<h3>
 {{title}}

</h3>
The material between the braces is often the name of a component property. Angular replaces that name with the
string value of the corresponding component property. In the example above, Angular evaluates the title and heroImageUrl properties
and "fills in the blanks", first displaying a bold application title and then a heroic image.

More generally, the material between the braces is a template expression that Angular first evaluates
and then converts to a string. The following interpolation illustrates the point by adding the two numbers within braces:

<!-- "The sum of 1 + 1 is 2" -->
<p>The sum of 1 + 1 is {{1 + 1}}</p>
The expression can invoke methods of the host component, as we do here with getVal():

<!-- "The sum of 1 + 1 is not 4" -->
<p>The sum of 1 + 1 is not {{1 + 1 + getVal()}}</p>
Angular evaluates all expressions in double curly braces, converts the expression results to strings, and links them with neighboring literal strings. Finally,
it assigns this composite interpolated result to an element or directive property.

We appear to be inserting the result between element tags and assigning it to attributes.
It's convenient to think so, and we rarely suffer for this mistake.
Though this is not exactly true. Interpolation is a special syntax that Angular converts into a
property binding, and is explained below.

But first, let's take a closer look at template expressions and statements.

Template expressions

A template expression produces a value.
Angular executes the expression and assigns it to a property of a binding target;
the target might be an HTML element, a component, or a directive.

We put a template expression within the interpolation braces when we wrote {{1 + 1}}.
We’ll see template expressions again in the property binding section,
appearing in quotes to the right of the = symbol as in [property]="expression".

We write template expressions in a language that looks like JavaScript.
Many JavaScript expressions are legal template expressions, but not all.

JavaScript expressions that have or promote side effects are prohibited,
including:

	assignments (=, +=, -=, ...)

	new

	chaining expressions with ; or ,

	increment and decrement operators (++ and --)

Other notable differences from JavaScript syntax include:

	no support for the bitwise operators | and &

	new template expression operators, such as | and ?.

Expression context
Perhaps more surprising, template expressions cannot refer to anything in
the global namespace. They can’t refer to window or document. They
can’t call console.log or Math.max. They are restricted to referencing
members of the expression context.

The expression context is typically the component instance, which is
the source of binding values.

When we see title wrapped in double-curly braces, {{title}},
we know that title is a property of the data-bound component.
When we see isUnchanged in [disabled]="isUnchanged",
we know we are referring to that component's isUnchanged property.

The component itself is usually the expression context, in which case
the template expression usually references that component.

The expression context can include objects other than the component.
A template reference variable is one such alternative context object.

Expression guidelines

Template expressions can make or break an application.
Please follow these guidelines:

	No visible side effects

	Quick execution

	Simplicity

	Idempotence

The only exceptions to these guidelines should be in specific circumstances that you thoroughly understand.

No visible side effects

A template expression should not change any application state other than the value of the
target property.

This rule is essential to Angular's "unidirectional data flow" policy.
We should never worry that reading a component value might change some other displayed value.
The view should be stable throughout a single rendering pass.

Quick execution

Angular executes template expressions more often than we think.
They can be called after every keypress or mouse move.
Expressions should finish quickly or the user experience may drag, especially on slower devices.
Consider caching values computed from other values when the computation is expensive.

Simplicity

Although it's possible to write quite complex template expressions, we really shouldn't.

A property name or method call should be the norm.
An occasional Boolean negation (!) is OK.
Otherwise, confine application and business logic to the component itself,
where it will be easier to develop and test.

Idempotence

An idempotent expression is ideal because
it is free of side effects and improves Angular's change detection performance.

In Angular terms, an idempotent expression always returns exactly the same thing until
one of its dependent values changes.

Dependent values should not change during a single turn of the event loop.
If an idempotent expression returns a string or a number, it returns the same string or number
when called twice in a row. If the expression returns an object (including an Array),
it returns the same object reference when called twice in a row.

Template statements

A template statement responds to an event raised by a binding target
such as an element, component, or directive.

We’ll see template statements in the event binding section,
appearing in quotes to the right of the = symbol as in (event)="statement".

A template statement has a side effect.
It's how we update application state from user input.
There would be no point to responding to an event otherwise.

Responding to events is the other side of Angular's "unidirectional data flow".
We're free to change anything, anywhere, during this turn of the event loop.

Like template expressions, template statements use a language that looks like JavaScript.
The template statement parser is different than the template expression parser and
specifically supports both basic assignment (=) and chaining expressions
(with ; or ,).

However, certain JavaScript syntax is not allowed:

	new

	increment and decrement operators, ++ and --

	operator assignment, such as += and -=

	the bitwise operators | and &

	the template expression operators

Statement context

As with expressions, statements can refer only to what's in the statement context — typically the
component instance to which we're binding the event.

Template statements cannot refer to anything in the global namespace. They
can’t refer to window or document. They can’t call console.log or
Math.max.

The onSave in (click)="onSave()" is sure to be a method of the data-bound component instance.

The statement context may include an object other than the component.
A template reference variable is one such alternative context object.
We'll frequently see the reserved $event symbol in event binding statements,
representing the "message" or "payload" of the raised event.

Statement guidelines

As with expressions, avoid writing complex template statements.
A method call or simple property assignment should be the norm.

Now that we have a feel for template expressions and statements,
we’re ready to learn about the varieties of data binding syntax beyond interpolation.

Binding syntax: An overview

Data binding is a mechanism for coordinating what users see with application data values.
While we could push values to and pull values from HTML,
the application is easier to write, read, and maintain if we turn these chores over to a binding framework.
We simply declare bindings between binding sources and target HTML elements and let the framework do the work.

Angular provides many kinds of data binding, and we’ll discuss each of them in this chapter.
First we'll take a high-level view of Angular data binding and its syntax.

We can group all bindings into three categories by the direction in which data flows.
Each category has its distinctive syntax:

	Data direction	Syntax	Binding type
	One-way
from data source
to view target	{{expression}}
[target] = "expression"
bind-target = "expression"	Interpolation
Property
Attribute
Class
Style
	One-way
from view target
to data source	(target) = "statement"
on-target = "statement"	Event
	Two-way	[(target)] = "expression"
bindon-target = "expression"	Two-way

Binding types other than interpolation have a target name to the left of the equal sign,
either surrounded by punctuation ([], ()) or preceded by a prefix (bind-, on-, bindon-).

What is that target? Before we can answer that question, we must challenge ourselves to look at template HTML in a new way.

A new mental model

With all the power of data binding and our ability to extend the HTML vocabulary
with custom markup, it is tempting to think of template HTML as HTML Plus.

Well, it is HTML Plus.
But it’s also significantly different than the HTML we’re used to.
We really need a new mental model.

In the normal course of HTML development, we create a visual structure with HTML elements, and
we modify those elements by setting element attributes with string constants.

<div class="special">Mental Model</div>

<button disabled>Save</button>
We still create a structure and initialize attribute values this way in Angular templates.

Then we learn to create new elements with components that encapsulate HTML
and drop them into our templates as if they were native HTML elements.

<!-- Normal HTML -->
<div class="special">Mental Model</div>
<!-- Wow! A new element! -->
<hero-detail></hero-detail>
That’s HTML Plus.

Now we start to learn about data binding. The first binding we meet might look like this:

<!-- Bind button disabled state to `isUnchanged` property -->
<button [disabled]="isUnchanged">Save</button>
We’ll get to that peculiar bracket notation in a moment. Looking beyond it,
our intuition tells us that we’re binding to the button's disabled attribute and setting
it to the current value of the component’s isUnchanged property.

Our intuition is wrong! Our everyday HTML mental model is misleading us.
In fact, once we start data binding, we are no longer working with HTML attributes. We aren't setting attributes.
We are setting the properties of DOM elements, components, and directives.

HTML attribute vs. DOM property

The distinction between an HTML attribute and a DOM property is crucial to understanding how Angular binding works.

Attributes are defined by HTML. Properties are defined by the DOM (Document Object Model).

	A few HTML attributes have 1:1 mapping to properties. id is one example.

	Some HTML attributes don't have corresponding properties. colspan is one example.

	Some DOM properties don't have corresponding attributes. textContent is one example.

	Many HTML attributes appear to map to properties ... but not in the way we might think!

That last category can be especially confusing ... until we understand this general rule:

Attributes initialize DOM properties and then they are done.
Property values can change; attribute values can't.

For example, when the browser renders <input type="text" value="Bob">, it creates a
corresponding DOM node with a value property initialized to "Bob".

When the user enters "Sally" into the input box, the DOM element value property becomes "Sally".
But the HTML value attribute remains unchanged as we discover if we ask the input element
about that attribute: input.getAttribute('value') // returns "Bob"

The HTML attribute value specifies the initial value; the DOM value property is the current value.

The disabled attribute is another peculiar example. A button's disabled property is
false by default so the button is enabled.
When we add the disabled attribute, its presence alone initializes the button's disabled property to true
so the button is disabled.

Adding and removing the disabled attribute disables and enables the button. The value of the attribute is irrelevant,
which is why we cannot enable a button by writing <button disabled="false">Still Disabled</button>.

Setting the button's disabled property (say, with an Angular binding) disables or enables the button.
The value of the property matters.

The HTML attribute and the DOM property are not the same thing, even when they have the same name.

This is so important, we’ll say it again.

Template binding works with properties and events, not attributes.

A world without attributesIn the world of Angular 2, the only role of attributes is to initialize element and directive state.
When we data bind, we're dealing exclusively with element and directive properties and events.
Attributes effectively disappear.

With this model firmly in mind, let's learn about binding targets.

Binding targets

The target of a data binding is something in the DOM.
Depending on the binding type, the target can be an
(element | component | directive) property, an
(element | component | directive) event, or (rarely) an attribute name.
The following table summarizes:

	Binding type	Target	Examples
	Property	Element property
Component property
Directive property	
<hero-detail [hero]="currentHero"></hero-detail>
<div [ngClass] = "{selected: isSelected}"></div>

	Event	Element event
Component event
Directive event	<button (click) = "onSave()">Save</button>
<hero-detail (deleteRequest)="deleteHero()"></hero-detail>
<div (myClick)="clicked=$event">click me</div>

	Two-way	Event and property	<input [(ngModel)]="heroName">

	Attribute	Attribute
(the exception)	<button [attr.aria-label]="help">help</button>

	Class	class property	<div [class.special]="isSpecial">Special</div>

	Style	style property	<button [style.color] = "isSpecial ? 'red' : 'green'">

Let’s descend from the architectural clouds and look at each of these binding types in concrete detail.

Property binding

We write a template property binding when we want to set a property of a view element to the value of
a template expression.

The most common property binding sets an element property to a component property value. An example is
binding the src property of an image element to a component’s heroImageUrl property:

Another example is disabling a button when the component says that it isUnchanged:

<button [disabled]="isUnchanged">Cancel is disabled</button>
Another is setting a property of a directive:

<div [ngClass]="classes">[ngClass] binding to the classes property</div>
Yet another is setting the model property of a custom component (a great way
for parent and child components to communicate):

<hero-detail [hero]="currentHero"></hero-detail>
One-way in

People often describe property binding as one-way data binding because it flows a value in one direction,
from a component’s data property into a target element property.

We cannot use property binding to pull values out of the target element.
We can't bind to a property of the target element to read it. We can only set it.

Nor can we use property binding to call a method on the target element.

If the element raises events we can listen to them with an event binding.

If we must read a target element property or call one of its methods,
we'll need a different technique.
See the API reference for
viewChild and
contentChild.

Binding target

An element property between enclosing square brackets identifies the target property. The target property in the following code is the image element’s src property.

Some people prefer the bind- prefix alternative, known as the canonical form:

The target name is always the name of a property, even when it appears to be the name of something else. We see src and may think it’s the name of an attribute. No. It’s the name of an image element property.

Element properties may be the more common targets,
but Angular looks first to see if the name is a property of a known directive,
as it is in the following example:

<div [ngClass]="classes">[ngClass] binding to the classes property</div>
Technically, Angular is matching the name to a directive input,
one of the property names listed in the directive’s inputs array or a property decorated with @Input().
Such inputs map to the directive’s own properties.

If the name fails to match a property of a known directive or element, Angular reports an “unknown directive” error.

Avoid side effects

As we've already discussed, evaluation of a template expression should have no visible side effects. The expression language itself does its part to keep us safe. We can’t assign a value to anything in a property binding expression nor use the increment and decrement operators.

Of course, our expression might invoke a property or method that has side effects. Angular has no way of knowing that or stopping us.

The expression could call something like getFoo(). Only we know what getFoo() does.
If getFoo() changes something and we happen to be binding to that something, we risk an unpleasant experience. Angular may or may not display the changed value. Angular may detect the change and throw a warning error. Our general advice: stick to data properties and to methods that return values and do no more.

Return the proper type

The template expression should evaluate to the type of value expected by the target property.
Return a string if the target property expects a string.
Return a number if the target property expects a number.
Return an object if the target property expects an object.

The hero property of the HeroDetail component expects a Hero object, which is exactly what we’re sending in the property binding:

<hero-detail [hero]="currentHero"></hero-detail>
Remember the brackets

The brackets tell Angular to evaluate the template expression.
If we forget the brackets, Angular treats the string as a constant and initializes the target property with that string.
It does not evaluate the string!

Don't make the following mistake:

<!-- ERROR: HeroDetailComponent.hero expects a
 Hero object, not the string "currentHero" -->
 <hero-detail hero="currentHero"></hero-detail>

We should omit the brackets when all of the following are true:

	The target property accepts a string value.

	The string is a fixed value that we can bake into the template.

	This initial value never changes.

We routinely initialize attributes this way in standard HTML, and it works
just as well for directive and component property initialization.
The following example initializes the prefix property of the HeroDetailComponent to a fixed string,
not a template expression. Angular sets it and forgets about it.

<hero-detail prefix="You are my" [hero]="currentHero"></hero-detail>
The [hero] binding, on the other hand, remains a live binding to the component's currentHero property.

Property binding or interpolation?

We often have a choice between interpolation and property binding.
The following binding pairs do the same thing:

<p> is the <i>interpolated</i> image.</p>
<p> is the <i>property bound</i> image.</p>

<p>"{{title}}" is the <i>interpolated</i> title.</p>
<p>"" is the <i>property bound</i> title.</p>
Interpolation is a convenient alternative for property binding in many cases.
In fact, Angular translates those interpolations into the corresponding property bindings
before rendering the view.

There is no technical reason to prefer one form to the other.
We lean toward readability, which tends to favor interpolation.
We suggest establishing coding style rules and choosing the form that
both conforms to the rules and feels most natural for the task at hand.

Content Security

Imagine the following malicious content.

evilTitle = 'Template <script>alert("evil never sleeps")</script>Syntax';
Fortunately, Angular data binding is on alert for dangerous HTML.
It sanitizes the values before displaying them.
It will not allow HTML with script tags to leak into the browser, neither with interpolation
nor property binding.

<p>"{{evilTitle}}" is the <i>interpolated</i> evil title.</p>
<p>"" is the <i>property bound</i> evil title.</p>
Interpolation handles the script tags differently than property binding but both approaches render the
content harmlessly.

[image: evil title made safe]
Attribute, Class, and Style Bindings

The template syntax provides specialized one-way bindings for scenarios less well suited to property binding.

Attribute Binding

We can set the value of an attribute directly with an attribute binding.

This is the only exception to the rule that a binding sets a target property. This is the only binding that creates and sets an attribute.

We have stressed throughout this chapter that setting an element property with a property binding is always preferred to setting the attribute with a string. Why does Angular offer attribute binding?

We must use attribute binding when there is no element property to bind.

Consider the ARIA,
SVG, and
table span attributes. They are pure attributes.
They do not correspond to element properties, and they do not set element properties.
There are no property targets to bind to.

We become painfully aware of this fact when we try to write something like this:

<tr><td colspan="{{1 + 1}}">Three-Four</td></tr>We get this error:

Template parse errors:
Can't bind to 'colspan' since it isn't a known native propertyAs the message says, the <td> element does not have a colspan property.
It has the "colspan" attribute, but
interpolation and property binding can set only properties, not attributes.

We need attribute bindings to create and bind to such attributes.

Attribute binding syntax resembles property binding.
Instead of an element property between brackets, we start with the prefix attr,
followed by a dot (.) and the name of the attribute. We then set the attribute
value, using an expression that resolves to a string.

Here we bind [attr.colspan] to a calculated value:

<table border=1>
 <!-- expression calculates colspan=2 -->
 <tr><td [attr.colspan]="1 + 1">One-Two</td></tr>

 <!-- ERROR: There is no `colspan` property to set!
 <tr><td colspan="{{1 + 1}}">Three-Four</td></tr>
 -->

 <tr><td>Five</td><td>Six</td></tr>
</table>
Here's how the table renders:

One of the primary use cases for attribute binding
is to set ARIA attributes, as in this example:

<!-- create and set an aria attribute for assistive technology -->
<button [attr.aria-label]="actionName">{{actionName}} with Aria</button>
Class Binding

We can add and remove CSS class names from an element’s class attribute with
a class binding.

Class binding syntax resembles property binding.
Instead of an element property between brackets, we start with the prefix class,
optionally followed by a dot (.) and the name of a CSS class: [class.class-name].

The following examples show how to add and remove the application's "special" class
with class bindings. Here's how we set the attribute without binding:

<!-- standard class attribute setting -->
<div class="bad curly special">Bad curly special</div>
We can replace that with a binding to a string of the desired class names; this is an all-or-nothing, replacement binding.

<!-- reset/override all class names with a binding -->
<div class="bad curly special"
 [class]="badCurly">Bad curly</div>
Finally, we can bind to a specific class name.
Angular adds the class when the template expression evaluates to truthy.
It removes the class when the expression is falsey.

<!-- toggle the "special" class on/off with a property -->
<div [class.special]="isSpecial">The class binding is special</div>

<!-- binding to `class.special` trumps the class attribute -->
<div class="special"
 [class.special]="!isSpecial">This one is not so special</div>
While this is a fine way to toggle a single class name,
we generally prefer the NgClass directive for managing multiple class names at the same time.

Style Binding

We can set inline styles with a style binding.

Style binding syntax resembles property binding.
Instead of an element property between brackets, we start with the prefix style,
followed by a dot (.) and the name of a CSS style property: [style.style-property].

<button [style.color] = "isSpecial ? 'red': 'green'">Red</button>
<button [style.background-color]="canSave ? 'cyan': 'grey'" >Save</button>
Some style binding styles have unit extension. Here we conditionally set the font size in “em” and “%” units .

<button [style.font-size.em]="isSpecial ? 3 : 1" >Big</button>
<button [style.font-size.%]="!isSpecial ? 150 : 50" >Small</button>
While this is a fine way to set a single style,
we generally prefer the NgStyle directive when setting several inline styles at the same time.

Note that a style property name can be written in either
dash-case, as shown above, or
camelCase, such as fontSize.

Event Binding

The bindings we’ve met so far flow data in one direction: from the component to an element.

Users don’t just stare at the screen. They enter text into input boxes. They pick items from lists.
They click buttons. Such user actions may result in a flow of data in the opposite direction:
from an element to the component.

The only way to know about a user action is to listen for certain events such as
keystrokes, mouse movements, clicks, and touches.
We declare our interest in user actions through Angular event binding.

Event binding syntax consists of a target event within parentheses on the left of an equal sign, and a quoted
template statement on the right.
The following event binding listens for the button’s click event, calling
the component's onSave() method whenever a click occurs:

<button (click)="onSave()">Save</button>
Target Event

A name between enclosing parentheses — for example, (click) —
identifies the target event. In the following example, the target is the button’s click event.

<button (click)="onSave()">Save</button>
Some people prefer the on- prefix alternative, known as the canonical form:

<button on-click="onSave()">On Save</button>
Element events may be the more common targets, but Angular looks first to see if the name matches an event property
of a known directive, as it does in the following example:

<!-- `myClick` is an event on the custom `MyClickDirective` -->
<div (myClick)="clickMessage=$event">click with myClick</div>
The myClick directive is further described below in the section
on Aliasing input/output properties.

If the name fails to match an element event or an output property of a known directive,
Angular reports an “unknown directive” error.

$event and event handling statements

In an event binding, Angular sets up an event handler for the target event.

When the event is raised, the handler executes the template statement.
The template statement typically involves a receiver that wants to do something
in response to the event, such as take a value from the HTML control and store it
in a model.

The binding conveys information about the event, including data values, through
an event object named $event.

The shape of the event object is determined by the target event itself.
If the target event is a native DOM element event, the $event is a
DOM event object,
with properties such as target and target.value.

Consider this example:

<input [value]="currentHero.firstName"
 (input)="currentHero.firstName=$event.target.value" >
We’re binding the input box value to a firstName property, and we’re listening for changes by binding to the input box’s input event.
When the user makes changes, the input event is raised, and the binding executes the statement within a context that includes the DOM event object, $event.

To update the firstName property, we must get the changed text by following
the path $event.target.value.

If the event belongs to a directive (remember: components are directives), $event has whatever shape the directive chose to produce.

Custom Events with EventEmitter

Directives typically raise custom events with an Angular EventEmitter.
A directive creates an EventEmitter and exposes it as a property.
The directive calls EventEmitter.emit(payload) to fire an event, passing in a message payload that can be anything.
Parent directives listen for the event by binding to this property and accessing the payload through the $event object.

Consider a HeroDetailComponent that presents hero information and responds to user actions.
Although the HeroDetailComponent has a delete button it doesn't know how to delete the hero itself.
The best it can do is raise an event reporting the user's delete request.

Here are the pertinent excerpts from that HeroDetailComponent:

HeroDetailComponent.ts (template)
template: `
<div>

 {{prefix}} {{hero?.fullName}}

 <button (click)="delete()">Delete</button>
</div>`
HeroDetailComponent.ts (delete logic)
// This component make a request but it can't actually delete a hero.
deleteRequest = new EventEmitter<Hero>();

delete() {
 this.deleteRequest.emit(this.hero);
}
The component defines a deleteRequest property that returns an EventEmitter.
When the user clicks delete, the component invokes the delete() method
which tells the EventEmitter to emit a Hero object.

Now imagine a hosting parent component that binds to the HeroDetailComponent's deleteRequest event.

<hero-detail (deleteRequest)="deleteHero($event)" [hero]="currentHero"></hero-detail>
When the deleteRequest event fires, Angular calls the parent component's deleteHero method,
passing the hero-to-delete (emitted by HeroDetail) in the $event variable.

Template statements have side effects

The deleteHero method has a side effect: it deletes a hero.
Template statement side effects are not just OK, they are expected.

Deleting the hero updates the model, perhaps triggering other changes
including queries and saves to a remote server.
These changes percolate through the system and are ultimately displayed in this and other views.
It's all good.

Two-way binding with NgModel

When developing data entry forms, we often want to both display a data property and update that property when the user makes changes.

The [(ngModel)] two-way data binding syntax makes that easy. Here's an example:

<input [(ngModel)]="currentHero.firstName">
[()] = banana in a boxTo remember that the parentheses go inside the brackets, visualize a banana in a box.

FormsModule is Required to use ngModelBefore we can use the ngModel directive in a two-way data binding,
we must import the FormsModule and add it to the Angular module's imports list.
Learn more about the FormsModule and ngModel in the
Forms chapter.

app.module.ts (FormsModule import)
import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';
import { FormsModule } from '@angular/forms';

import { AppComponent } from './app.component';

@NgModule({
 imports: [
 BrowserModule,
 FormsModule
],
 declarations: [
 AppComponent
],
 bootstrap: [AppComponent]
})
export class AppModule { }
There’s a story behind this construction, a story that builds on the property and event binding techniques we learned previously.

Inside [(ngModel)]

We could have achieved the same result with separate bindings to
the <input> element's value property and input event.

<input [value]="currentHero.firstName"
 (input)="currentHero.firstName=$event.target.value" >
That’s cumbersome. Who can remember which element property to set and what event reports user changes?
How do we extract the currently displayed text from the input box so we can update the data property?
Who wants to look that up each time?

That ngModel directive hides these onerous details behind its own ngModel input and ngModelChange output properties.

<input
 [ngModel]="currentHero.firstName"
 (ngModelChange)="currentHero.firstName=$event">
The ngModel input property sets the element's value property and the ngModelChange output property
listens for changes to the element's value.
The details are specific to each kind of element and therefore the NgModel directive only works for elements,
such as the input text box, that are supported by a ControlValueAccessor.
We can't apply [(ngModel)] to our custom components until we write a suitable value accessor,
a technique that is beyond the scope of this chapter.

Separate ngModel bindings is an improvement. We can do better.

We shouldn't have to mention the data property twice. Angular should be able to capture the component’s data property and set it
with a single declaration — which it can with the [()] syntax:

<input [(ngModel)]="currentHero.firstName">
[(ngModel)] is a specific example of a more general pattern in which Angular "de-sugars" the [(x)] syntax
into an x input property for property binding and an xChange output property for event binding.
Angular constructs the event property binding's template statement by appending =$event
to the literal string of the template expression.

[(x)]="e" <==> [x]="e" (xChange)="e=$event"

We can write a two-way binding directive of our own to exploit this behavior.

Is [(ngModel)] all we need? Is there ever a reason to fall back to its expanded form?

The [()] syntax can only set a data-bound property.
If we need to do something more or something different, we need to write the expanded form ourselves.

Let's try something silly like forcing the input value to uppercase:

<input
 [ngModel]="currentHero.firstName"
 (ngModelChange)="setUpperCaseFirstName($event)">
Here are all variations in action, including the uppercase version:

[image: NgModel variations]
Built-in directives

Earlier versions of Angular included over seventy built-in directives.
The community contributed many more, and countless private directives
have been created for internal applications.

We don’t need many of those directives in Angular 2.
Quite often we can achieve the same results with the more capable and expressive Angular 2 binding system.
Why create a directive to handle a click when we can write a simple binding such as this?

<button (click)="onSave()">Save</button>
We still benefit from directives that simplify complex tasks.
Angular still ships with built-in directives; just not as many.
We'll write our own directives, just not as many.

This segment reviews some of the most frequently used built-in directives.

NgClass

We typically control how elements appear
by adding and removing CSS classes dynamically.
We can bind to NgClass to add or remove several classes simultaneously.

A class binding is a good way to add or remove a single class.

<!-- toggle the "special" class on/off with a property -->
<div [class.special]="isSpecial">The class binding is special</div>
The NgClass directive may be the better choice
when we want to add or remove many CSS classes at the same time.

A good way to apply NgClass is by binding it to a key:value control object. Each key of the object is a CSS class name; its value is true if the class should be added, false if it should be removed.

Consider a component method such as setClasses that manages the state of three CSS classes:

setClasses() {
 let classes = {
 saveable: this.canSave, // true
 modified: !this.isUnchanged, // false
 special: this.isSpecial, // true
 };
 return classes;
}
Now we can add an NgClass property binding that calls setClasses
and sets the element's classes accordingly:

<div [ngClass]="setClasses()">This div is saveable and special</div>
NgStyle

We can set inline styles dynamically, based on the state of the component.
Binding to NgStyle lets us set many inline styles simultaneously.

A style binding is an easy way to set a single style value.

<div [style.font-size]="isSpecial ? 'x-large' : 'smaller'" >
 This div is x-large.
</div>
The NgStyle directive may be the better choice
when we want to set many inline styles at the same time.

We apply NgStyle by binding it to a key:value control object.
Each key of the object is a style name; its value is whatever is appropriate for that style.

Consider a component method such as setStyles that returns an object defining three styles:

setStyles() {
 let styles = {
 // CSS property names
 'font-style': this.canSave ? 'italic' : 'normal', // italic
 'font-weight': !this.isUnchanged ? 'bold' : 'normal', // normal
 'font-size': this.isSpecial ? '24px' : '8px', // 24px
 };
 return styles;
}
Now we just add an NgStyle property binding that calls setStyles
and sets the element's styles accordingly:

<div [ngStyle]="setStyles()">
 This div is italic, normal weight, and extra large (24px).
</div>
NgIf

We can add an element subtree (an element and its children) to the DOM by binding an NgIf directive to a truthy expression.

<div *ngIf="currentHero">Hello, {{currentHero.firstName}}</div>
Don't forget the asterisk (*) in front of ngIf.
For more information, see * and <template>.

Binding to a falsey expression removes the element subtree from the DOM.

<!-- because of the ngIf guard
 `nullHero.firstName` never has a chance to fail -->
<div *ngIf="nullHero">Hello, {{nullHero.firstName}}</div>

<!-- Hero Detail is not in the DOM because isActive is false-->
<hero-detail *ngIf="isActive"></hero-detail>
Visibility and NgIf are not the same

We can show and hide an element subtree (the element and its children) with a
class or style binding:

<!-- isSpecial is true -->
<div [class.hidden]="!isSpecial">Show with class</div>
<div [class.hidden]="isSpecial">Hide with class</div>

<!-- HeroDetail is in the DOM but hidden -->
<hero-detail [class.hidden]="isSpecial"></hero-detail>

<div [style.display]="isSpecial ? 'block' : 'none'">Show with style</div>
<div [style.display]="isSpecial ? 'none' : 'block'">Hide with style</div>
Hiding a subtree is quite different from excluding a subtree with NgIf.

When we hide the element subtree, it remains in the DOM.
Components in the subtree are preserved, along with their state.
Angular may continue to check for changes even to invisible properties.
The subtree may tie up substantial memory and computing resources.

When NgIf is false, Angular physically removes the element subtree from the DOM.
It destroys components in the subtree, along with their state, potentially freeing up substantial resources and
resulting in better performance for the user.

The show/hide technique is probably fine for small element trees.
We should be wary when hiding large trees; NgIf may be the safer choice. Always measure before leaping to conclusions.

NgSwitch

We bind to NgSwitch when we want to display one element tree (an element and its children)
from a set of possible element trees, based on some condition.
Angular puts only the selected element tree into the DOM.

Here’s an example:

 Eenie
 Meanie
 Miney
 Moe
 other

We bind the parent NgSwitch directive to an expression returning a switch value.
The value is a string in this example, but it can be a value of any type.

In this example, the parent NgSwitch directive controls a set of child elements.
A is either pegged to a match value expression or marked as the default.

At any particular moment, at most one of these spans is in the DOM.

If the span’s match value equals the switch value, Angular adds the to the DOM.
If none of the spans is a match, Angular adds the default span to the DOM.
Angular removes and destroys all other spans.

We could substitute any element for the span in this example.
That element could be a <div> with a vast subtree of its own elements.
Only the matching <div> and its subtree would appear in the DOM;
the others would be removed.

Three collaborating directives are at work here:

	ngSwitch: bound to an expression that returns the switch value

	ngSwitchCase: bound to an expression returning a match value

	ngSwitchDefault: a marker attribute on the default element

Do not put the asterisk (*) in front of ngSwitch. Use the property binding instead.

Do put the asterisk (*) in front of ngSwitchCase and ngSwitchDefault.
For more information, see * and <template>.

NgFor

NgFor is a repeater directive — a way to customize data display.

Our goal is to present a list of items. We define a block of HTML that defines how a single item should be displayed.
We tell Angular to use that block as a template for rendering each item in the list.

Here is an example of NgFor applied to a simple <div>:

<div *ngFor="let hero of heroes">{{hero.fullName}}</div>
We can also apply an NgFor to a component element, as in this example:

<hero-detail *ngFor="let hero of heroes" [hero]="hero"></hero-detail>
Don't forget the asterisk (*) in front of ngFor.
For more information, see * and <template>.

The text assigned to *ngFor is the instruction that guides the repeater process.

NgFor microsyntax

The string assigned to *ngFor is not a template expression.
It’s a microsyntax — a little language of its own that Angular interprets. In this example, the string "let hero of heroes" means:

Take each hero in the heroes array, store it in the local hero variable, and make it available to the templated HTML for each iteration.

Angular translates this instruction into a new set of elements and bindings.

In the two previous examples, the ngFor directive iterates over the heroes array returned by the parent component’s heroes property,
stamping out instances of the element to which it is applied.
Angular creates a fresh instance of the template for each hero in the array.

The let keyword before hero creates a template input variable called hero.

A template input variable is not the same as a template reference variable!

We use this variable within the template to access a hero’s properties,
as we’re doing in the interpolation.
We can also pass the variable in a binding to a component element,
as we're doing with hero-detail.

NgFor with index

The ngFor directive supports an optional index that increases from 0 to the length of the array for each iteration.
We can capture the index in a template input variable and use it in our template.

The next example captures the index in a variable named i, using it to stamp out rows like "1 - Hercules Son of Zeus".

<div *ngFor="let hero of heroes; let i=index">{{i + 1}} - {{hero.fullName}}</div>
Learn about other special index-like values such as last, even, and odd in the NgFor API reference.

NgForTrackBy

The ngFor directive has the potential to perform poorly, especially with large lists.
A small change to one item, an item removed, or an item added can trigger a cascade of DOM manipulations.

For example, we could refresh the list of heroes by re-querying the server.
The refreshed list probably contains most, if not all, of the previously displayed heroes.

We know this because the id of each hero hasn't changed.
But Angular sees only a fresh list of new object references.
It has no choice but to tear down the old list, discard those DOM elements, and re-build a new list with new DOM elements.

Angular can avoid this churn if we give it a tracking function that tells it what we know:
that two objects with the same hero.id are the same hero. Here is such a function:

trackByHeroes(index: number, hero: Hero) { return hero.id; }
Now set the NgForTrackBy directive to that tracking function.

<div *ngFor="let hero of heroes; trackBy:trackByHeroes">({{hero.id}}) {{hero.fullName}}</div>
The tracking function doesn't eliminate all DOM changes.
Angular may have to update the DOM element if the same-hero properties have changed.
But if the properties haven't changed — and most of the time they will not have changed —
Angular can leave those DOM elements alone. The list UI will be smoother and more responsive.

Here is an illustration of the NgForTrackBy effect.

[image: NgForTrackBy]
* and <template>

When we reviewed the NgFor, NgIf, and NgSwitch built-in directives, we called out an oddity of the syntax: the asterisk (*) that appears before the directive names.

The * is a bit of syntactic sugar that makes it easier to read and write directives that modify HTML layout
with the help of templates.
NgFor, NgIf, and NgSwitch all add and remove element subtrees that are wrapped in <template> tags.

We didn't see the <template> tags because the * prefix syntax allowed us to skip those tags and
focus directly on the HTML element that we are including, excluding, or repeating.

In this section we go under the hood and see how
Angular strips away the * and expands the HTML into the <template> tags for us.

Expanding *ngIf

We can do what Angular does ourselves and expand the * prefix syntax to template syntax. Here's some code with *ngIf:

<hero-detail *ngIf="currentHero" [hero]="currentHero"></hero-detail>
The currentHero is referenced twice, first as the true/false condition for NgIf and
again as the actual hero passed into the HeroDetailComponent.

The first expansion step transports the ngIf (without the * prefix) and its contents
into an expression assigned to a template directive.

<hero-detail template="ngIf:currentHero" [hero]="currentHero"></hero-detail>
The next (and final) step unfolds the HTML into a <template> tag and [ngIf] property binding:

<template [ngIf]="currentHero">
 <hero-detail [hero]="currentHero"></hero-detail>
</template>
Notice that the [hero]="currentHero" binding remains on the child <hero-detail>
element inside the template.

Remember the brackets!Don’t make the mistake of writing ngIf="currentHero"!
That syntax assigns the string value "currentHero" to ngIf.
In JavaScript a non-empty string is a truthy value, so ngIf would always be
true and Angular would always display the hero-detail
… even when there is no currentHero!

Expanding *ngSwitch

A similar transformation applies to *ngSwitch. We can de-sugar the syntax ourselves.
Here's an example, first with *ngSwitchCase and *ngSwitchDefault and then again with <template> tags:

 <!-- with *NgSwitch -->
 Eenie
 Meanie
 Miney
 Moe
 other

 <!-- with <template> -->
 <template [ngSwitchCase]="'Eenie'">Eenie</template>
 <template [ngSwitchCase]="'Meanie'">Meanie</template>
 <template [ngSwitchCase]="'Miney'">Miney</template>
 <template [ngSwitchCase]="'Moe'">Moe</template>
 <template ngSwitchDefault>other</template>

The *ngSwitchCase and *ngSwitchDefault expand in exactly the same manner as *ngIf,
wrapping their former elements in <template> tags.

Now we can see why the ngSwitch itself is not prefixed with an asterisk (*).
It does not define content. It's job is to control a collection of templates.

In this case, it governs two sets of ngSwitchCase and NgSwitchDefault directives.
We should expect it to display the values of the selected template twice,
once for the (*) prefixed version and once for the expanded template version.
That's exactly what we see in this example:

[image: NgSwitch]Expanding *ngFor

The *ngFor undergoes a similar transformation. We begin with an *ngFor example:

<hero-detail *ngFor="let hero of heroes; trackBy:trackByHeroes" [hero]="hero"></hero-detail>
Here's the same example after transporting the ngFor to the template directive:

<hero-detail template="ngFor let hero of heroes; trackBy:trackByHeroes" [hero]="hero"></hero-detail>
And here it is expanded further into a <template> tag wrapping the original <hero-detail> element:

<template ngFor let-hero [ngForOf]="heroes" [ngForTrackBy]="trackByHeroes">
 <hero-detail [hero]="hero"></hero-detail>
</template>
The NgFor code is a bit more complex than NgIf because a repeater has more moving parts to configure.
In this case, we have to remember to create and assign the NgForOf directive that identifies the list and the NgForTrackBy directive.
Using the *ngFor syntax is much easier than writing out this expanded HTML ourselves.

Template reference variables

A template reference variable is a reference to a DOM element or directive within a template.

It can be used with native DOM elements but also with Angular 2 components — in fact, it will work with any custom web component.

Referencing a template reference variable

We can reference a template reference variable on the same element, on a sibling element, or on
any child elements.

Here are two other examples of creating and consuming a Template reference variable:

<!-- phone refers to the input element; pass its `value` to an event handler -->
<input #phone placeholder="phone number">
<button (click)="callPhone(phone.value)">Call</button>

<!-- fax refers to the input element; pass its `value` to an event handler -->
<input ref-fax placeholder="fax number">
<button (click)="callFax(fax.value)">Fax</button>
The hash (#) prefix to "phone" means that we're defining a phone variable.

Folks who don't like using the # character can use its canonical alternative,
the ref- prefix. For example, we can declare the our phone variable using
either #phone or ref-phone.

How a variable gets its value

Angular sets the variable's value to the element on which it was defined.
We defined these variables on the input elements.
We’re passing those input element objects across to the
button elements, where they're used in arguments to the call methods in the event bindings.

NgForm and template reference variables

Let's look at one final example: a form, the poster child for template reference variables.

The HTML for a form can be quite involved, as we saw in the Forms chapter.
The following is a simplified example — and it's not simple at all.

<form (ngSubmit)="onSubmit(theForm)" #theForm="ngForm">
 <div class="form-group">
 <label for="name">Name</label>
 <input class="form-control" name="name" required [(ngModel)]="currentHero.firstName">
 </div>
 <button type="submit" [disabled]="!theForm.form.valid">Submit</button>
</form>
A template reference variable, theForm, appears three times in this example, separated
by a large amount of HTML.

<form (ngSubmit)="onSubmit(theForm)" #theForm="ngForm">
 <button type="submit" [disabled]="!theForm.form.valid">Submit</button>
</form>
What is the value of theForm?

It would be the HTMLFormElement
if Angular hadn't taken it over.
It's actually ngForm, a reference to the Angular built-in NgForm directive that wraps the native HTMLFormElement
and endows it with additional superpowers such as the ability to
track the validity of user input.

This explains how we can disable the submit button by checking theForm.form.valid
and pass an object with rich information to the parent component's onSubmit method.

Input and output properties

So far, we’ve focused mainly on binding to component members within template expressions and statements
that appear on the right side of the binding declaration.
A member in that position is a data binding source.

This section concentrates on binding to targets, which are directive
properties on the left side of the binding declaration.
These directive properties must be declared as inputs or outputs.

Remember: All components are directives.

We're drawing a sharp distinction between a data binding target and a data binding source.

The target of a binding is to the left of the =.
The source is on the right of the =.

The target of a binding is the property or event inside the binding punctuation: [], () or [()].
The source is either inside quotes (" ") or within an interpolation ({{}}).

Every member of a source directive is automatically available for binding.
We don't have to do anything special to access a directive member in a template expression or statement.

We have limited access to members of a target directive.
We can only bind to properties that are explicitly identified as inputs and outputs.

In the following example, iconUrl and onSave are members of a component
that are referenced within quoted syntax to the right of the =.

<button (click)="onSave()">Save</button>
They are neither inputs nor outputs of the component. They are data sources for their bindings.

Now look at HeroDetailComponent when it is the target of a binding.

<hero-detail [hero]="currentHero" (deleteRequest)="deleteHero($event)">
</hero-detail>
Both HeroDetailComponent.hero and HeroDetailComponent.deleteRequest are on the left side of binding declarations.
HeroDetailComponent.hero is inside brackets; it is the target of a property binding.
HeroDetailComponent.deleteRequest is inside parentheses; it is the target of an event binding.

Declaring input and output properties

Target properties must be explicitly marked as inputs or outputs.

When we peek inside HeroDetailComponent, we see that these properties are marked
with decorators as input and output properties.

@Input() hero: Hero;
@Output() deleteRequest = new EventEmitter<Hero>();
Alternatively, we can identify members in the inputs and outputs arrays
of the directive metadata, as in this example:

@Component({
 inputs: ['hero'],
 outputs: ['deleteRequest'],
})
We can specify an input/output property either with a decorator or in a metadata array.
Don't do both!

Input or output?

Input properties usually receive data values.
Output properties expose event producers, such as EventEmitter objects.

The terms input and output reflect the perspective of the target directive.

[image: Inputs and outputs]HeroDetailComponent.hero is an input property from the perspective of HeroDetailComponent
because data flows into that property from a template binding expression.

HeroDetailComponent.deleteRequest is an output property from the perspective of HeroDetailComponent
because events stream out of that property and toward the handler in a template binding statement.

Aliasing input/output properties
Sometimes we want the public name of an input/output property to be different from the internal name.

This is frequently the case with attribute directives.
Directive consumers expect to bind to the name of the directive.
For example, when we apply a directive with a myClick selector to a <div> tag,
we expect to bind to an event property that is also called myClick.

<div (myClick)="clickMessage=$event">click with myClick</div>
However, the directive name is often a poor choice for the name of a property within the directive class.
The directive name rarely describes what the property does.
The myClick directive name is not a good name for a property that emits click messages.

Fortunately, we can have a public name for the property that meets conventional expectations,
while using a different name internally.
In the example immediately above, we are actually binding through the myClick alias to
the directive's own clicks property.

We can specify the alias for the property name by passing it into the input/output decorator like this:

@Output('myClick') clicks = new EventEmitter<string>(); // @Output(alias) propertyName = ...
We can also alias property names in the inputs and outputs arrays.
We write a colon-delimited (:) string with
the directive property name on the left and the public alias on the right:

@Directive({
 outputs: ['clicks:myClick'] // propertyName:alias
})

Template expression operators

The template expression language employs a subset of JavaScript syntax supplemented with a few special operators
for specific scenarios. We'll cover two of these operators: pipe and safe navigation operator.

The pipe operator (|)

The result of an expression might require some transformation before we’re ready to use it in a binding. For example, we might want to display a number as a currency, force text to uppercase, or filter a list and sort it.

Angular pipes are a good choice for small transformations such as these.
Pipes are simple functions that accept an input value and return a transformed value.
They're easy to apply within template expressions, using the pipe operator (|):

<div>Title through uppercase pipe: {{title | uppercase}}</div>
The pipe operator passes the result of an expression on the left to a pipe function on the right.

We can chain expressions through multiple pipes:

<!-- Pipe chaining: convert title to uppercase, then to lowercase -->
<div>
 Title through a pipe chain:
 {{title | uppercase | lowercase}}
</div>
And we can also apply parameters to a pipe:

<!-- pipe with configuration argument => "February 25, 1970" -->
<div>Birthdate: {{currentHero?.birthdate | date:'longDate'}}</div>
The json pipe is particularly helpful for debugging our bindings:

<div>{{currentHero | json}}</div>
The generated output would look something like this

{ "firstName": "Hercules", "lastName": "Son of Zeus",
 "birthdate": "1970-02-25T08:00:00.000Z",
 "url": "http://www.imdb.com/title/tt0065832/",
 "rate": 325, "id": 1 }

The safe navigation operator (?.) and null property paths

The Angular safe navigation operator (?.) is a fluent and convenient way to guard against null and undefined values in property paths.
Here it is, protecting against a view render failure if the currentHero is null.

The current hero's name is {{currentHero?.firstName}}
Let’s elaborate on the problem and this particular solution.

What happens when the following data bound title property is null?

The title is {{title}}
The view still renders but the displayed value is blank; we see only "The title is" with nothing after it.
That is reasonable behavior. At least the app doesn't crash.

Suppose the template expression involves a property path, as in this next example
where we’re displaying the firstName of a null hero.

The null hero's name is {{nullHero.firstName}}
JavaScript throws a null reference error, and so does Angular:

TypeError: Cannot read property 'firstName' of null in [null].
Worse, the entire view disappears.

We could claim that this is reasonable behavior if we believed that the hero property must never be null.
If it must never be null and yet it is null,
we've made a programming error that should be caught and fixed.
Throwing an exception is the right thing to do.

On the other hand, null values in the property path may be OK from time to time,
especially when we know the data will arrive eventually.

While we wait for data, the view should render without complaint, and
the null property path should display as blank just as the title property does.

Unfortunately, our app crashes when the currentHero is null.

We could code around that problem with NgIf.

<!--No hero, div not displayed, no error -->
<div *ngIf="nullHero">The null hero's name is {{nullHero.firstName}}</div>
Or we could try to chain parts of the property path with &&, knowing that the expression bails out
when it encounters the first null.

The null hero's name is {{nullHero && nullHero.firstName}}
These approaches have merit but can be cumbersome, especially if the property path is long.
Imagine guarding against a null somewhere in a long property path such as a.b.c.d.

The Angular safe navigation operator (?.) is a more fluent and convenient way to guard against nulls in property paths.
The expression bails out when it hits the first null value.
The display is blank, but the app keeps rolling without errors.

<!-- No hero, no problem! -->
The null hero's name is {{nullHero?.firstName}}
It works perfectly with long property paths such as a?.b?.c?.d.

Summary

We’ve completed our survey of template syntax. Now it's time to put that knowledge to work as we write our own components and directives.

8. Angular Cheat Sheet
A quick guide to Angular syntax.

9. Style Guide
We are still preparing style recommendations for the new NgModules feature
introduced in RC5 and will add it to the style guide soon.

Welcome to the Angular 2 Style Guide

Purpose

If you are looking for an opinionated style guide for syntax, conventions, and structuring Angular applications, then step right in.

The purpose of this style guide is to provide guidance on building Angular applications by showing the conventions we use and, more importantly, why we choose them.

Style Vocabulary

Each guideline describes either a good or bad practice, and all have a consistent presentation.

The wording of each guideline indicates how strong the recommendation is.

Do is one that should always be followed.
Always might be a bit too strong of a word.
Guidelines that literally should always be followed are extremely rare.
On the other hand, we need a really unusual case for breaking a Do guideline.

Consider guidelines should generally be followed.
If you fully understand the meaning behind the guideline and have a good reason to deviate, then do so. Please strive to be consistent.

Avoid indicates something we should almost never do. Code examples to avoid have an unmistakeable red header.

File Structure Conventions

Some code examples display a file that has one or more similarly named companion files. (e.g. hero.component.ts and hero.component.html).

The guideline will use the shortcut hero.component.ts|html|css|spec to represent those various files. Using this shortcut makes this guide's file structures easier to read and more terse.

Table of Contents

	Single Responsibility

	Naming

	Coding Conventions

	Application Structure

	Components

	Directives

	Services

	Data Services

	Lifecycle Hooks

	Appendix

Single Responsibility

We apply the Single Responsibility Principle to all Components, Services, and other symbols we create. This helps make our app cleaner, easier to read and maintain, and more testable.

Rule of One

Style 01-01

Do define one thing (e.g. service or component) per file.

Consider limiting files to 400 lines of code.

Why? One component per file makes it far easier to read, maintain, and avoid collisions with teams in source control.

Why? One component per file avoids hidden bugs that often arise when combining components in a file where they may share variables, create unwanted closures, or unwanted coupling with dependencies.

Why? A single component can be the default export for its file which facilitates lazy loading with the Component Router.

The key is to make the code more reusable, easier to read, and less mistake prone.

The following negative example defines the AppComponent, bootstraps the app, defines the Hero model object, and loads heroes from the server ... all in the same file. Don't do this.

AVOID: app/heroes/hero.component.ts
/* avoid */

import { platformBrowserDynamic } from '@angular/platform-browser-dynamic';
import { BrowserModule } from '@angular/platform-browser';
import { NgModule, Component, OnInit } from '@angular/core';

class Hero {
 id: number;
 name: string;
}

@Component({
 selector: 'my-app',
 template: `
 <h1>{{title}}</h1>
 <pre>{{heroes | json}}</pre>
 `,
 styleUrls: ['app/app.component.css']
})
class AppComponent implements OnInit {
 title = 'Tour of Heroes';

 heroes: Hero[] = [];

 ngOnInit() {
 getHeroes().then(heroes => this.heroes = heroes);
 }
}

@NgModule({
 imports: [BrowserModule],
 declarations: [AppComponent],
 exports: [AppComponent],
 bootstrap: [AppComponent]
})
export class AppModule { }

platformBrowserDynamic().bootstrapModule(AppModule);

const HEROES: Hero[] = [
 {id: 1, name: 'Bombasto'},
 {id: 2, name: 'Tornado'},
 {id: 3, name: 'Magneta'},
];

function getHeroes(): Promise<Hero[]> {
 return Promise.resolve(HEROES); // TODO: get hero data from the server;
}
Better to redistribute the component and supporting activities into their own dedicated files.

import { platformBrowserDynamic } from '@angular/platform-browser-dynamic';

import { AppModule } from './app/app.module';

platformBrowserDynamic().bootstrapModule(AppModule);
import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';
import { RouterModule } from '@angular/router';

import { AppComponent } from './app.component';
import { HeroesComponent } from './heroes/heroes.component';

@NgModule({
 imports: [
 BrowserModule,
],
 declarations: [
 AppComponent,
 HeroesComponent
],
 exports: [AppComponent],
 bootstrap: [AppComponent]
})
export class AppModule { }
import { Component } from '@angular/core';

import { HeroService } from './heroes';

@Component({
 moduleId: module.id,
 selector: 'toh-app',
 template: `
 <toh-heroes></toh-heroes>
 `,
 styleUrls: ['app.component.css'],
 providers: [HeroService]
})
export class AppComponent { }
import { Component, OnInit } from '@angular/core';

import { Hero, HeroService } from './shared';

@Component({
 selector: 'toh-heroes',
 template: `
 <pre>{{heroes | json}}</pre>
 `
})
export class HeroesComponent implements OnInit {
 heroes: Hero[] = [];

 constructor(private heroService: HeroService) {}

 ngOnInit() {
 this.heroService.getHeroes()
 .then(heroes => this.heroes = heroes);
 }
}
import { Injectable } from '@angular/core';

import { HEROES } from './mock-heroes';

@Injectable()
export class HeroService {
 getHeroes() {
 return Promise.resolve(HEROES);
 }
}
export class Hero {
 id: number;
 name: string;
}
import { Hero } from './hero.model';

export const HEROES: Hero[] = [
 {id: 1, name: 'Bombasto'},
 {id: 2, name: 'Tornado'},
 {id: 3, name: 'Magneta'},
];
As the app grows, this rule becomes even more important.

Back to topSmall Functions

Style 01-02

Do define small functions

Consider limiting to no more than 75 lines.

Why? Small functions are easier to test, especially when they do one thing and serve one purpose.

Why? Small functions promote reuse.

Why? Small functions are easier to read.

Why? Small functions are easier to maintain.

Why? Small functions help avoid hidden bugs that come with large functions that share variables with external scope, create unwanted closures, or unwanted coupling with dependencies.

Back to topNaming

Naming conventions are hugely important to maintainability and readability. This guide recommends naming conventions for the file name and the symbol name.

General Naming Guidelines

Style 02-01

Do use consistent names for all symbols.

Do follow a pattern that describes the symbol's feature then its type. The recommended pattern is feature.type.ts.

Why? Naming conventions help provide a consistent way to find content at a glance. Consistency within the project is vital. Consistency with a team is important. Consistency across a company provides tremendous efficiency.

Why? The naming conventions should simply help us find our code faster and make it easier to understand.

Why? Names of folders and files should clearly convey their intent. For example, app/heroes/hero-list.component.ts may contain a component that manages a list of heroes.

Back to topSeparate File Names with Dots and Dashes

Style 02-02

Do use dashes to separate words in the descriptive name.

Do use dots to separate the descriptive name from the type.

Do use consistent type names for all components following a pattern that describes the component's feature then its type. A recommended pattern is feature.type.ts.

Do use conventional type names including .service, .component, .pipe.
Invent additional type names if you must but take care not to create too many.

Why? Type names provide a consistent way to quickly identify what is in the file.

Why? Make it easy to find a specific file type using an editor or IDE's fuzzy search techniques.

Why? Unabbreviated type names such as .service are descriptive and unambiguous.
Abbreviations such as .srv, .svc, and .serv can be confusing.

Why? Provides pattern matching for any automated tasks.

Back to topComponents and Directives

Style 02-03

Do use consistent names for all assets named after what they represent.

Do use upper camel case for symbols. Match the name of the symbol to the naming of the file.

Do append the symbol name with the suffix that it represents.

Why? Provides a consistent way to quickly identify and reference assets.

Why? Upper camel case is conventional for identifying objects that can be instantiated using a constructor.

Why? The Component suffix is more commonly used and is more explicitly descriptive.

	Symbol Name	File Name
	@Component({ ... })
export class AppComponent {}	app.component.ts

	@Component({ ... })
export class HeroesComponent	heroes.component.ts

	@Component({ ... })
export class HeroListComponent	hero-list.component.ts

	@Component({ ... })
export class HeroDetailComponent	hero-detail.component.ts

	@Directive({ ... })
export class ValidationDirective	validation.directive.ts

Back to topService Names

Style 02-04

Do use consistent names for all services named after their feature.

Do use upper camel case for services.

Do suffix services with Service when it is not clear what they are (e.g. when they are nouns).

Why? Provides a consistent way to quickly identify and reference services.

Why? Clear service names such as Logger do not require a suffix.

Why? Service names such as Credit are nouns and require a suffix and should be named with a suffix when it is not obvious if it is a service or something else.

	Symbol Name	File Name
	@Injectable()
export class HeroDataService {}	hero-data.service.ts

	@Injectable()
export class CreditService {}	credit.service.ts

	@Injectable()
export class Logger {}	logger.service.ts

Back to topBootstrapping

Style 02-05

Do put bootstrapping and platform logic for the app in a file named main.ts.

Avoid putting app logic in the main.ts. Instead consider placing it in a Component or Service.

Why? Follows a consistent convention for the startup logic of an app.

Why? Follows a familiar convention from other technology platforms.

Back to topDirective Selectors

Style 02-06

Do Use lower camel case for naming the selectors of our directives.

Why? Keeps the names of the properties defined in the directives that are bound to the view consistent with the attribute names.

Why? The Angular 2 HTML parser is case sensitive and will recognize lower camel case.

Back to topCustom Prefix for Components

Style 02-07

Do use a custom prefix for the selector of our components. For example, the prefix toh represents from Tour of Heroes and the prefix admin represents an admin feature area.

Do use a prefix that identifies the feature area or the app itself.

Why? Prevents name collisions.

Why? Makes it easier to promote and share our feature in other apps.

Why? Our Components and elements are easily identified.

AVOID: app/heroes/hero.component.ts
/* avoid */

// HeroComponent is in the Tour of Heroes feature
@Component({
 selector: 'hero'
})
export class HeroComponent {}
AVOID: app/users/users.component.ts
/* avoid */

// UsersComponent is in an Admin feature
@Component({
 selector: 'users'
})
export class UsersComponent {}
app/heroes/hero.component.ts
@Component({
 selector: 'toh-hero'
})
export class HeroComponent {}
app/users/users.component.ts
@Component({
 selector: 'admin-users'
})
export class UsersComponent {}
Custom Prefix for Directives

Style 02-08

Do use a custom prefix for the selector of our directives (for instance below we use the prefix toh from Tour of Heroes).

Why? Prevents name collisions.

Why? Our Directives are easily identified.

AVOID: app/shared/validate.directive.ts
/* avoid */

@Directive({
 selector: '[validate]'
})
export class ValidateDirective {}
app/shared/validate.directive.ts
@Directive({
 selector: '[tohValidate]'
})
export class ValidateDirective {}
Back to topPipe Names

Style 02-09

Do use consistent names for all pipes, named after their feature.

Why? Provides a consistent way to quickly identify and reference pipes.

	Symbol Name	File Name
	@Pipe({ name: 'ellipsis' })
export class EllipsisPipe implements PipeTransform { }	ellipsis.pipe.ts

	@Pipe({ name: 'initCaps' })
export class InitCapsPipe implements PipeTransform { }	init-caps.pipe.ts

Back to topUnit Test File Names

Style 02-10

Do name test specification files the same as the component they test.

Do name test specification files with a suffix of .spec.

Why? Provides a consistent way to quickly identify tests.

Why? Provides pattern matching for karma or other test runners.

	Symbol Name	File Name
	Components

	heroes.component.spec.ts

hero-list.component.spec.ts

hero-detail.component.spec.ts

	Services

	logger.service.spec.ts

hero.service.spec.ts

filter-text.service.spec.ts

	Pipes

	ellipsis.pipe.spec.ts

init-caps.pipe.spec.ts

Back to topEnd to End Test File Names

Style 02-11

Do name end-to-end test specification files after the feature they test with a suffix of .e2e-spec.

Why? Provides a consistent way to quickly identify end-to-end tests.

Why? Provides pattern matching for test runners and build automation.

	Symbol Name	File Name
	End to End Tests

	app.e2e-spec.ts

heroes.e2e-spec.ts

Back to topCoding Conventions

Have consistent set of coding, naming, and whitespace conventions.

Classes

Style 03-01

Do use upper camel case when naming classes.

Why? Follows conventional thinking for class names.

Why? Classes can be instantiated and construct an instance. We often use upper camel case to indicate a constructable asset.

AVOID: app/shared/exception.service.ts
/* avoid */

export class exceptionService {
 constructor() { }
}
app/shared/exception.service.ts
export class ExceptionService {
 constructor() { }
}
Back to topConstants

Style 03-02

Do declare variables with const if their values should not change during the application lifetime.

Why? Conveys to readers that the value is invariant.

TypeScript helps enforce that intent by requiring immediate initialization and by
preventing subsequent re-assignment.

Consider spelling const variables in lower camel case.

Why? lower camel case variable names (heroRoutes) are easier to read and understand
than the traditional UPPER_SNAKE_CASE names (HERO_ROUTES).

Why? The tradition of naming constants in UPPER_SNAKE_CASE reflects
an era before the modern IDEs that quickly reveal the const declaration.
TypeScript itself prevents accidental reassignment.

Do tolerate existing const variables that are spelled in UPPER_SNAKE_CASE.

Why? Although we recommend creating new constants in lower camel case,
the tradition of UPPER_SNAKE_CASE remains popular and pervasive,
especially in third party modules.

app/shared/data.service.ts
export const mockHeroes = ['Sam', 'Jill']; // prefer
export const heroesUrl = 'api/heroes'; // prefer
export const VILLAINS_URL = 'api/villains'; // tolerate
Back to topInterfaces

Style 03-03

Do name an interface using upper camel case.

Consider naming an interface without an I prefix.

Why? When we use types, we can often simply use the class as the type.

AVOID: app/shared/hero-collector.service.ts
/* avoid */

import { Injectable } from '@angular/core';

import { IHero } from './hero.model.avoid';

@Injectable()
export class HeroCollectorService {
 hero: IHero;

 constructor() { }
}
app/shared/hero-collector.service.ts
import { Injectable } from '@angular/core';

import { Hero } from './hero.model';

@Injectable()
export class HeroCollectorService {
 hero: Hero;

 constructor() { }
}
Back to topProperties and Methods

Style 03-04

Do use lower camel case to name properties and methods.

Avoid prefixing private properties and methods with an underscore.

Why? Follows conventional thinking for properties and methods.

Why? JavaScript lacks a true private property or method.

Why? TypeScript tooling makes it easy to identify private vs public properties and methods.

AVOID: app/shared/toast.service.ts
/* avoid */

import { Injectable } from '@angular/core';

@Injectable()
export class ToastService {
 message: string;

 private _toastCount: number;

 hide() {
 this._toastCount--;
 this._log();
 }

 show() {
 this._toastCount++;
 this._log();
 }

 private _log() {
 console.log(this.message);
 }
}
app/shared/toast.service.ts
import { Injectable } from '@angular/core';

@Injectable()
export class ToastService {
 message: string;

 private toastCount: number;

 hide() {
 this.toastCount--;
 this.log();
 }

 show() {
 this.toastCount++;
 this.log();
 }

 private log() {
 console.log(this.message);
 }
}
Back to topImport Destructuring Spacing

Style 03-05

Do leave one whitespace character inside of the import statements' curly braces when destructuring.

Why? Whitespace makes it easier to read the imports.

AVOID: app/+heroes/shared/hero.service.ts
/* avoid */

import {Injectable} from '@angular/core';
import {Http, Response} from '@angular/http';

import {Hero} from './hero.model';
import {ExceptionService, SpinnerService, ToastService} from '../../shared';
app/+heroes/shared/hero.service.ts
import { Injectable } from '@angular/core';
import { Http, Response } from '@angular/http';

import { Hero } from './hero.model';
import { ExceptionService, SpinnerService, ToastService } from '../../shared';
Back to topImport Line Spacing

Style 03-06

Do leave one empty line between third party imports and imports of code we created.

Do list import lines alphabetized by the module.

Do list destructured imported assets alphabetically.

Why? The empty line makes it easy to read and locate imports.

Why? Alphabetizing makes it easier to read and locate imports.

AVOID: app/+heroes/shared/hero.service.ts
/* avoid */

import { ExceptionService, SpinnerService, ToastService } from '../../shared';
import { Http, Response } from '@angular/http';
import { Injectable } from '@angular/core';
import { Hero } from './hero.model';
app/+heroes/shared/hero.service.ts
import { Injectable } from '@angular/core';
import { Http, Response } from '@angular/http';

import { Hero } from './hero.model';
import { ExceptionService, SpinnerService, ToastService } from '../../shared';
Back to topApplication Structure

Have a near term view of implementation and a long term vision. Start small but keep in mind where the app is heading down the road.

All of the app's code goes in a folder named app. All content is 1 feature per file. Each component, service, and pipe is in its own file. All 3rd party vendor scripts are stored in another folder and not in the app folder. We didn't write them and we don't want them cluttering our app. Use the naming conventions for files in this guide.

Back to topLIFT

Style 04-01

Do structure the app such that we can Locate our code quickly, Identify the code at a glance, keep the Flattest structure we can, and Try to be DRY.

Do define the structure to follow these four basic guidelines, listed in order of importance.

Why? LIFT Provides a consistent structure that scales well, is modular, and makes it easier to increase developer efficiency by finding code quickly. Another way to check our app structure is to ask ourselves: How quickly can we open and work in all of the related files for a feature?

Back to topLocate

Style 04-02

Do make locating our code intuitive, simple and fast.

Why? We find this to be super important for a project. If we cannot find the files we need to work on quickly, we will not be able to work as efficiently as possible, and the structure will need to change. We may not know the file name or where its related files are, so putting them in the most intuitive locations and near each other saves a ton of time. A descriptive folder structure can help with this.

Back to topIdentify

Style 04-03

Do name the file such that we instantly know what it contains and represents.

Do be descriptive with file names and keep the contents of the file to exactly one component.

Avoid files with multiple components, multiple services, or a mixture.

Why? We spend less time hunting and pecking for code, and become more efficient. If this means we want longer file names, then so be it.

There are deviations of the 1 per file rule when we have a set of very small features that are all related to each other, as they are still easily identifiable.

Back to topFlat

Style 04-04

Do keep a flat folder structure as long as possible.

Consider creating folders when we get to seven or more files.

Why? Nobody wants to search seven levels of folders to find a file. In a folder structure there is no hard and fast number rule, but when a folder has seven to ten files, that may be time to create subfolders. We base it on our comfort level. Use a flatter structure until there is an obvious value (to help the rest of LIFT) in creating a new folder.

Back to topT-DRY (Try to be DRY)

Style 04-05

Do be DRY (Don't Repeat Yourself)

Avoid being so DRY that we sacrifice readability.

Why? Being DRY is important, but not crucial if it sacrifices the others in LIFT, which is why we call it T-DRY. We don’t want to type hero-view.component.html for a view because, well, it’s obviously a view. If it is not obvious or by convention, then we name it.

Back to topOverall Structural Guidelines

Style 04-06

Do start small but keep in mind where the app is heading down the road.

Do have a near term view of implementation and a long term vision.

Do put all of the app's code in a folder named app.

Consider creating a folder for each component including its .ts, .html, .css and .spec file.

Why? Helps us keep the app structure small and easy to maintain in the early stages, while being easy to evolve as the app grows.

Why? Components often have four files (e.g. *.html, *.css, *.ts, and *.spec.ts) and can clutter a folder quickly.

Overall Folder and File Structure
src
app
+heroes
hero
hero.component.ts|html|css|spec.ts
index.ts

hero-list
hero-list.component.ts|html|css|spec.ts
index.ts

shared
hero.model.ts
hero.service.ts|spec.ts
index.ts

heroes.component.ts|html|css|spec.ts
index.ts

shared
app.component.ts|html|css|spec.ts

main.ts
index.html
...

While we prefer our Components to be in their own dedicated folder, another option for small apps is to keep Components flat (not in a dedicated folder). This adds up to four files to the existing folder, but also reduces the folder nesting. Be consistent.

Back to topShared Folder

Style 04-07

Do put all shared files within a component feature in a shared folder.

Consider creating a folder for each component including its .ts, .html, .css and .spec file.

Why? Separates shared files from the components within a feature.

Why? Makes it easier to locate shared files within a component feature.

Shared Folder
src
app
+heroes
hero
hero-list
shared
hero-button
hero.model.ts
hero.service.ts|spec.ts
index.ts

heroes.component.ts|html|css|spec.ts
index.ts

shared
exception.service.ts|spec.ts
index.ts
nav

app.component.ts|html|css|spec.ts

main.ts
index.html
...

Back to topFolders-by-Feature Structure

Style 04-08

Do create folders named for the feature they represent.

Why? A developer can locate the code, identify what each file represents at a glance, the structure is as flat as it can be, and there is no repetitive nor redundant names.

Why? The LIFT guidelines are all covered.

Why? Helps reduce the app from becoming cluttered through organizing the content and keeping them aligned with the LIFT guidelines.

Why? When there are a lot of files (e.g. 10+) locating them is easier with a consistent folder structures and more difficult in flat structures.

Below is an example of a small app with folders per component.

Folders per Component
src
app
+heroes
hero
hero-list
shared
heroes.component.ts|html|css|spec.ts
index.ts

+villains
villain
villain-list
shared
villains.component.ts|html|css|spec.ts
index.ts

shared
app.component.ts|html|css|spec.ts

main.ts
index.html
...

Back to topLayout Components

Style 04-09

Do put components that define the overall layout in a shared folder.

Do put shared layout components in their own folder, under the shared folder.

Why? We need a place to host our layout for our app. Our navigation bar, footer, and other aspects of the app that are needed for the entire app.

Why? Organizes all layout in a consistent place re-used throughout the application.

Folder for Layout Components
src
app
+heroes
shared
nav
index.ts
nav.component.ts|html|css|spec.ts

footer
index.ts
footer.component.ts|html|css|spec.ts

index.ts
...

app.component.ts|html|css|spec.ts

main.ts
index.html
...

Back to topCreate and Import Barrels

Style 04-10

Consider creating a file that imports, aggregates, and re-exports items. We call this technique a barrel.

Consider naming this barrel file index.ts.

Why? A barrel aggregates many imports into a single import.

Why? A barrel reduces the number of imports a file may need.

Why? A barrel provides a consistent pattern to import everything exported in the barrel from a folder.

Why? This is consistent with a pattern from Node, which imports the index.js|ts file from a folder.

Why? A barrel shortens import statements.

export * from './config';
export * from './entity.service';
export * from './exception.service';
export * from './filter-text';
export * from './init-caps.pipe';
export * from './modal';
export * from './nav';
export * from './spinner';
export * from './toast';
export * from './filter-text.component';
export * from './filter-text.service';
export * from './modal.component';
export * from './modal.service';
export * from './nav.component';
export * from './spinner.component';
export * from './spinner.service';
export * from './toast.component';
export * from './toast.service';
Folder Barrels
src
app
+dashboard
+heroes
shared
app.component.ts|html|css|spec.ts

main.ts
index.html
...

AVOID: app/heroes/heroes.component.ts
/* avoid */

import { Component, OnInit } from '@angular/core';

import { CONFIG } from '../shared/config';
import { EntityService } from '../shared/entity.service';
import { ExceptionService } from '../shared/exception.service';
import { FilterTextComponent } from '../shared/filter-text/filter-text.component';
import { InitCapsPipe } from '../shared/init-caps.pipe';
import { SpinnerService } from '../shared/spinner/spinner.service';
import { ToastService } from '../shared/toast/toast.service';

@Component({
 selector: 'toh-heroes',
 templateUrl: 'app/+heroes/heroes.component.html'
})
export class HeroesComponent implements OnInit {
 constructor() { }

 ngOnInit() { }
}
app/heroes/heroes.component.ts
import { Component, OnInit } from '@angular/core';

import {
 CONFIG,
 EntityService,
 ExceptionService,
 SpinnerService,
 ToastService
} from '../shared';

@Component({
 selector: 'toh-heroes',
 templateUrl: 'heroes.component.html'
})
export class HeroesComponent implements OnInit {
 constructor() { }

 ngOnInit() { }
}
Back to topLazy Loaded Folders

Style 04-11

A distinct application feature or workflow may be lazy loaded or loaded on demand rather than when the application starts.

Do put the contents of lazy loaded features in a lazy loaded folder.
A typical lazy loaded folder contains a routing component, its child components, and their related assets and modules.

Why? The folder makes it easy to identify and isolate the feature content.

Back to topPrefix Lazy Loaded Folders with +

Style 04-12

Do prefix the name of a lazy loaded folder with a (+) e.g., +dashboard/.

Why? Lazy loaded code paths are easily identifiable by their + prefix.

Why? Lazy loaded code paths are easily distinguishable from non lazy loaded paths.

Why? If we see an import path that contains a +, we can quickly refactor to use lazy loading.

Lazy Loaded Folders
src
app
+dashboard
dashboard.component.ts|html|css|spec.ts
index.ts

Back to topNever Directly Import Lazy Loaded Folders

Style 04-13

Avoid allowing modules in sibling and parent folders to directly import a module in a lazy loaded feature.

Why? Directly importing a module loads it immediately when our intention is to load it on demand.

AVOID: app/app.component.ts
import { HeroesComponent } from './+heroes';
Back to topLazy Loaded Folders May Import From a Parent

Style 04-14

Do allow lazy loaded modules to import a module from a parent folder.

Why? A parent module has already been loaded by the time the lazy loaded module imports it.

app/+heroes/heroes.component.ts
import { Logger } from '../shared';
Back to topUse Component Router to Lazy Load

Style 04-15

Do use the Component Router to lazy load routable features.

Why? That's the easiest way to load a module on demand.

Back to topComponents

Components Selector Naming

Style 05-02

Do use kebab-case for naming the element selectors of our components.

Why? Keeps the element names consistent with the specification for Custom Elements.

AVOID: app/heroes/shared/hero-button/hero-button.component.ts
/* avoid */

@Component({
 selector: 'tohHeroButton',
 templateUrl: 'hero-button.component.html'
})
export class HeroButtonComponent {}
@Component({
 selector: 'toh-hero-button',
 templateUrl: 'hero-button.component.html'
})
export class HeroButtonComponent {}
<toh-hero-button></toh-hero-button>
Back to topComponents as Elements

Style 05-03

Do define Components as elements via the selector.

Why? Components have templates containing HTML and optional Angular template syntax. They are most associated with putting content on a page, and thus are more closely aligned with elements.

Why? Components are derived from Directives, and thus their selectors can be elements, attributes, or other selectors. Defining the selector as an element provides consistency for components that represent content with a template.

Why? It is easier to recognize that a symbol is a component vs a directive by looking at the template's html.

AVOID: app/heroes/hero-button/hero-button.component.ts
/* avoid */

@Component({
 selector: '[tohHeroButton]',
 templateUrl: 'hero-button.component.html'
})
export class HeroButtonComponent {}
AVOID: app/app.component.html
<!-- avoid -->

<div tohHeroButton></div>
@Component({
 selector: 'toh-hero-button',
 templateUrl: 'hero-button.component.html'
})
export class HeroButtonComponent {}
<toh-hero-button></toh-hero-button>
Back to topExtract Template and Styles to Their Own Files

Style 05-04

Do extract templates and styles into a separate file, when more than 3 lines.

Do name the template file [component-name].component.html, where [component-name] is our component name.

Do name the style file [component-name].component.css, where [component-name] is our component name.

Why? Syntax hints for inline templates in (.js and .ts) code files are not supported by some editors.

Why? A component file's logic is easier to read when not mixed with inline template and styles.

AVOID: app/heroes/heroes.component.ts
/* avoid */

@Component({
 selector: 'toh-heroes',
 template: `
 <div>
 <h2>My Heroes</h2>
 <ul class="heroes">
 <li *ngFor="let hero of heroes">
 {{hero.id}} {{hero.name}}

 <div *ngIf="selectedHero">
 <h2>{{selectedHero.name | uppercase}} is my hero</h2>
 </div>
 </div>
 `,
 styleUrls: [`
 .heroes {
 margin: 0 0 2em 0; list-style-type: none; padding: 0; width: 15em;
 }
 .heroes li {
 cursor: pointer;
 position: relative;
 left: 0;
 background-color: #EEE;
 margin: .5em;
 padding: .3em 0;
 height: 1.6em;
 border-radius: 4px;
 }
 .heroes .badge {
 display: inline-block;
 font-size: small;
 color: white;
 padding: 0.8em 0.7em 0 0.7em;
 background-color: #607D8B;
 line-height: 1em;
 position: relative;
 left: -1px;
 top: -4px;
 height: 1.8em;
 margin-right: .8em;
 border-radius: 4px 0 0 4px;
 }
 `]
})
export class HeroesComponent implements OnInit {
 heroes: Hero[];
 selectedHero: Hero;

 ngOnInit() {}
}
@Component({
 selector: 'toh-heroes',
 templateUrl: 'heroes.component.html',
 styleUrls: ['heroes.component.css']
})
export class HeroesComponent implements OnInit {
 heroes: Hero[];
 selectedHero: Hero;

 ngOnInit() { }
}
<div>
 <h2>My Heroes</h2>
 <ul class="heroes">
 <li *ngFor="let hero of heroes">
 {{hero.id}} {{hero.name}}

 <div *ngIf="selectedHero">
 <h2>{{selectedHero.name | uppercase}} is my hero</h2>
 </div>
</div>
.heroes {
 margin: 0 0 2em 0; list-style-type: none; padding: 0; width: 15em;
}
.heroes li {
 cursor: pointer;
 position: relative;
 left: 0;
 background-color: #EEE;
 margin: .5em;
 padding: .3em 0;
 height: 1.6em;
 border-radius: 4px;
}
.heroes .badge {
 display: inline-block;
 font-size: small;
 color: white;
 padding: 0.8em 0.7em 0 0.7em;
 background-color: #607D8B;
 line-height: 1em;
 position: relative;
 left: -1px;
 top: -4px;
 height: 1.8em;
 margin-right: .8em;
 border-radius: 4px 0 0 4px;
}
Back to topDecorate Input and Output Properties Inline

Style 05-12

Do place the @Input() or @Output() on the same line as the property they decorate.

Why? It is easier and more readable to identify which properties in a class are inputs or outputs.

Why? If we ever need to rename the property or event name associated to @Input or @Output we can modify it on a single place.

Why? The metadata declaration attached to the directive is shorter and thus more readable.

Why? Placing the decorator on the same line makes for shorter code and still easily identifies the property as an input or output.

AVOID: app/heroes/shared/hero-button/hero-button.component.ts
/* avoid */

@Component({
 selector: 'toh-hero-button',
 template: `<button></button>`,
 inputs: [
 'label'
],
 outputs: [
 'change'
]
})
export class HeroButtonComponent {
 change = new EventEmitter<any>();
 label: string;
}
app/heroes/shared/hero-button/hero-button.component.ts
@Component({
 selector: 'toh-hero-button',
 template: `<button>{{label}}</button>`
})
export class HeroButtonComponent {
 @Output() change = new EventEmitter<any>();
 @Input() label: string;
}
Back to topAvoid Renaming Inputs and Outputs

Style 05-13

Avoid renaming inputs and outputs, when possible.

Why? May lead to confusion when the output or the input properties of a given directive are named a given way but exported differently as a public API.

AVOID: app/heroes/shared/hero-button/hero-button.component.ts
/* avoid */

@Component({
 selector: 'toh-hero-button',
 template: `<button>{{label}}</button>`
})
export class HeroButtonComponent {
 @Output('changeEvent') change = new EventEmitter<any>();
 @Input('labelAttribute') label: string;
}
AVOID: app/app.component.html
<!-- avoid -->

<toh-hero-button labelAttribute="OK" (changeEvent)="doSomething()">
</toh-hero-button>
@Component({
 selector: 'toh-hero-button',
 template: `<button>{{label}}</button>`
})
export class HeroButtonComponent {
 @Output() change = new EventEmitter<any>();
 @Input() label: string;
}
<toh-hero-button label="OK" (change)="doSomething()">
</toh-hero-button>
Back to topMember Sequence

Style 05-14

Do place properties up top followed by methods.

Do place private members after public members, alphabetized.

Why? Placing members in a consistent sequence makes it easy to read and helps we instantly identify which members of the component serve which purpose.

AVOID: app/shared/toast/toast.component.ts
/* avoid */

export class ToastComponent implements OnInit {

 private defaults = {
 title: '',
 message: 'May the Force be with You'
 };
 message: string;
 title: string;
 private toastElement: any;

 ngOnInit() {
 this.toastElement = document.getElementById('toh-toast');
 }

 // private methods
 private hide() {
 this.toastElement.style.opacity = 0;
 window.setTimeout(() => this.toastElement.style.zIndex = 0, 400);
 }

 activate(message = this.defaults.message, title = this.defaults.title) {
 this.title = title;
 this.message = message;
 this.show();
 }

 private show() {
 console.log(this.message);
 this.toastElement.style.opacity = 1;
 this.toastElement.style.zIndex = 9999;

 window.setTimeout(() => this.hide(), 2500);
 }
}
app/shared/toast/toast.component.ts
export class ToastComponent implements OnInit {
 // public properties
 message: string;
 title: string;

 // private fields
 private defaults = {
 title: '',
 message: 'May the Force be with You'
 };
 private toastElement: any;

 // public methods
 activate(message = this.defaults.message, title = this.defaults.title) {
 this.title = title;
 this.message = message;
 this.show();
 }

 ngOnInit() {
 this.toastElement = document.getElementById('toh-toast');
 }

 // private methods
 private hide() {
 this.toastElement.style.opacity = 0;
 window.setTimeout(() => this.toastElement.style.zIndex = 0, 400);
 }

 private show() {
 console.log(this.message);
 this.toastElement.style.opacity = 1;
 this.toastElement.style.zIndex = 9999;
 window.setTimeout(() => this.hide(), 2500);
 }
}
Back to topPut Logic in Services

Style 05-15

Do limit logic in a component to only that required for the view. All other logic should be delegated to services.

Do move reusable logic to services and keep components simple and focused on their intended purpose.

Why? Logic may be reused by multiple components when placed within a service and exposed via a function.

Why? Logic in a service can more easily be isolated in a unit test, while the calling logic in the component can be easily mocked.

Why? Removes dependencies and hides implementation details from the component.

Why? Keeps the component slim, trim, and focused.

AVOID: app/heroes/hero-list/hero-list.component.ts
/* avoid */

import { OnInit } from '@angular/core';
import { Http, Response } from '@angular/http';
import { Observable } from 'rxjs/Observable';

import { Hero } from '../shared/hero.model';

const heroesUrl = 'http://angular.io';

export class HeroListComponent implements OnInit {
 heroes: Hero[];
 constructor(private http: Http) {}
 getHeroes() {
 this.heroes = [];
 this.http.get(heroesUrl)
 .map((response: Response) => <Hero[]>response.json().data)
 .catch(this.catchBadResponse)
 .finally(() => this.hideSpinner())
 .subscribe((heroes: Hero[]) => this.heroes = heroes);
 }
 ngOnInit() {
 this.getHeroes();
 }

 private catchBadResponse(err: any, source: Observable<any>) {
 // log and handle the exception
 return new Observable();
 }

 private hideSpinner() {
 // hide the spinner
 }
}
app/heroes/hero-list/hero-list.component.ts
import { Component, OnInit } from '@angular/core';

import { Hero, HeroService } from '../shared';

@Component({
 selector: 'toh-hero-list',
 template: `...`
})
export class HeroListComponent implements OnInit {
 heroes: Hero[];
 constructor(private heroService: HeroService) {}
 getHeroes() {
 this.heroes = [];
 this.heroService.getHeroes()
 .subscribe(heroes => this.heroes = heroes);
 }
 ngOnInit() {
 this.getHeroes();
 }
}
Back to topDon't Prefix Output Properties

Style 05-16

Do name events without the prefix on.

Do name our event handler methods with the prefix on followed by the event name.

Why? This is consistent with built-in events such as button clicks.

Why? Angular allows for an alternative syntax on-*. If the event itself was prefixed with on this would result in an on-onEvent binding expression.

AVOID: app/heroes/hero.component.ts
/* avoid */

@Component({
 selector: 'toh-hero',
 template: `...`
})
export class HeroComponent {
 @Output() onSavedTheDay = new EventEmitter<boolean>();
}
AVOID: app/app.component.html
<!-- avoid -->

<toh-hero (onSavedTheDay)="onSavedTheDay($event)"></toh-hero>
export class HeroComponent {
 @Output() savedTheDay = new EventEmitter<boolean>();
}
<toh-hero (savedTheDay)="onSavedTheDay($event)"></toh-hero>
Back to topPut Presentation Logic in the Component Class

Style 05-17

Do put presentation logic in the Component class, and not in the template.

Why? Logic will be contained in one place (the Component class) instead of being spread in two places.

Why? Keeping the component's presentation logic in the class instead of the template improves testability, maintainability, and reusability.

AVOID: app/heroes/hero-list/hero-list.component.ts
/* avoid */

@Component({
 selector: 'toh-hero-list',
 template: `
 <section>
 Our list of heroes:
 <hero-profile *ngFor="let hero of heroes" [hero]="hero">
 </hero-profile>
 Total powers: {{totalPowers}}

 Average power: {{totalPowers / heroes.length}}
 </section>
 `
})
export class HeroListComponent {
 heroes: Hero[];
 totalPowers: number;
}
app/heroes/hero-list/hero-list.component.ts
@Component({
 selector: 'toh-hero-list',
 template: `
 <section>
 Our list of heroes:
 <toh-hero *ngFor="let hero of heroes" [hero]="hero">
 </toh-hero>
 Total powers: {{totalPowers}}

 Average power: {{avgPower}}
 </section>
 `
})
export class HeroListComponent {
 heroes: Hero[];
 totalPowers: number;

 get avgPower() {
 return this.totalPowers / this.heroes.length;
 }
}
Back to topDirectives

Back to topUse Directives to Enhance an Existing Element

Style 06-01

Do use attribute directives when you have presentation logic without a template.

Why? Attributes directives don't have an associated template.

Why? An element may have more than one attribute directive applied.

app/shared/highlight.directive.ts
@Directive({
 selector: '[tohHighlight]'
})
export class HighlightDirective {
 @HostListener('mouseover') onMouseEnter() {
 // do highlight work
 }
}
app/app.component.html
<div tohHighlight>Bombasta</div>
Back to topUse HostListener and HostBinding Class Decorators

Style 06-03

Do use @HostListener and @HostBinding instead of the host property of the @Directive and @Component decorators:

Why? The property or method name associated with @HostBinding or respectively @HostListener should be modified only in a single place - in the directive's class. In contrast if we use host we need to modify both the property declaration inside the controller, and the metadata associated to the directive.

Why? The metadata declaration attached to the directive is shorter and thus more readable.

AVOID: app/shared/validator.directive.ts
/* avoid */

@Directive({
 selector: '[tohValidator]',
 host: {
 '(mouseenter)': 'onMouseEnter()',
 'attr.role': 'button'
 }
})
export class ValidatorDirective {
 role = 'button';
 onMouseEnter() {
 // do work
 }
}
app/shared/validator.directive.ts
@Directive({
 selector: '[tohValidator]'
})
export class ValidatorDirective {
 @HostBinding('attr.role') role = 'button';
 @HostListener('mouseenter') onMouseEnter() {
 // do work
 }
}
Back to topServices

Services are Singletons in Same Injector

Style 07-01

Do use services as singletons within the same injector. Use them for sharing data and functionality.

Why? Services are ideal for sharing methods across a feature area or an app.

Why? Services are ideal for sharing stateful in-memory data.

app/heroes/shared/hero.service.ts
export class HeroService {
 constructor(private http: Http) { }

 getHeroes() {
 return this.http.get('api/heroes')
 .map((response: Response) => <Hero[]>response.json().data);
 }
}
Back to topSingle Responsibility

Style 07-02

Do create services with a single responsibility that is encapsulated by its context.

Do create a new service once the service begins to exceed that singular purpose.

Why? When a service has multiple responsibilities, it becomes difficult to test.

Why? When a service has multiple responsibilities, every Component or Service that injects it now carries the weight of them all.

Back to topProviding a Service

Style 07-03

Do provide services to the Angular 2 injector at the top-most component where they will be shared.

Why? The Angular 2 injector is hierarchical.

Why? When providing the service to a top level component, that instance is shared and available to all child components of that top level component.

Why? This is ideal when a service is sharing methods or state.

Why? This is not ideal when two different components need different instances of a service. In this scenario it would be better to provide the service at the component level that needs the new and separate instance.

import { Component } from '@angular/core';

import { HeroService } from './heroes';

@Component({
 selector: 'toh-app',
 template: `
 <toh-heroes></toh-heroes>
 `,
 providers: [HeroService]
})
export class AppComponent {}
import { Component, OnInit } from '@angular/core';

import { Hero, HeroService } from '../shared';

@Component({
 selector: 'toh-heroes',
 template: `
 <pre>{{heroes | json}}</pre>
 `
})
export class HeroListComponent implements OnInit {
 heroes: Hero[] = [];

 constructor(private heroService: HeroService) { }

 ngOnInit() {
 this.heroService.getHeroes().subscribe(heroes => this.heroes = heroes);
 }
}
Back to topUse the @Injectable() Class Decorator

Style 07-04

Do use the @Injectable class decorator instead of the @Inject parameter decorator when using types as tokens for the dependencies of a service.

Why? The Angular DI mechanism resolves all the dependencies of our services based on their types declared with the services' constructors.

Why? When a service accepts only dependencies associated with type tokens, the @Injectable() syntax is much less verbose compared to using @Inject() on each individual constructor parameter.

AVOID: app/heroes/shared/hero-arena.service.ts
/* avoid */

export class HeroArena {
 constructor(
 @Inject(HeroService) private heroService: HeroService,
 @Inject(Http) private http: Http) {}
}
app/heroes/shared/hero-arena.service.ts
@Injectable()
export class HeroArena {
 constructor(
 private heroService: HeroService,
 private http: Http) {}
}
Back to topData Services

Separate Data Calls

Style 08-01

Do refactor logic for making data operations and interacting with data to a service.

Do make data services responsible for XHR calls, local storage, stashing in memory, or any other data operations.

Why? The component's responsibility is for the presentation and gathering of information for the view. It should not care how it gets the data, just that it knows who to ask for it. Separating the data services moves the logic on how to get it to the data service, and lets the component be simpler and more focused on the view.

Why? This makes it easier to test (mock or real) the data calls when testing a component that uses a data service.

Why? Data service implementation may have very specific code to handle the data repository. This may include headers, how to talk to the data, or other services such as Http. Separating the logic into a data service encapsulates this logic in a single place hiding the implementation from the outside consumers (perhaps a component), also making it easier to change the implementation.

Back to topLifecycle Hooks

Use Lifecycle Hooks to tap into important events exposed by Angular.

Back to topImplement Lifecycle Hooks Interfaces

Style 09-01

Do implement the lifecycle hook interfaces.

Why? We get strong typing for the method signatures.
The compiler and editor can call our attention to misspellings.

AVOID: app/heroes/shared/hero-button/hero-button.component.ts
/* avoid */

@Component({
 selector: 'toh-hero-button',
 template: `<button>OK<button>`
})
export class HeroButtonComponent {
 onInit() { // misspelled
 console.log('The component is initialized');
 }
}
app/heroes/shared/hero-button/hero-button.component.ts
@Component({
 selector: 'toh-hero-button',
 template: `<button>OK</button>`
})
export class HeroButtonComponent implements OnInit {
 ngOnInit() {
 console.log('The component is initialized');
 }
}
Back to topAppendix

Useful tools and tips for Angular 2.

Back to topCodelyzer

Style A-01

Consider adjusting the rules in codelyzer to suit your needs.

Back to topFile Templates and Snippets

Style A-02

Do use file templates or snippets to help follow consistent styles and patterns. Here are templates and/or snippets for some of the web development editors and IDEs.

Back to top
10. Glossary

Angular 2 has a vocabulary of its own.
Most Angular 2 terms are everyday English words
with a specific meaning within the Angular system.

We have gathered here the most prominent terms
and a few less familiar ones that have unusual or
unexpected definitions.

A B C D E F G H I
J K L M N O P Q R
S T U V W X Y Z

Angular applications can be compiled by developers at build-time.
By compiling your application using the compiler-cli, ngc, you can bootstrap directly
to a Module Factory, meaning you don't need to include the Angular compiler in your javascript bundle.
Ahead of Time compiled applications also benefit from decreased load time and increased performance.

Angular Module

Helps us organize an application into cohesive blocks of functionality.
An Angular module identifies the components, directives, and pipes that are used by the application
along with the list of external Angular modules that the application needs, such as FormsModule.

Every Angular application has an application root module class. By convention the class is
called AppModule and resides in a file named app.component.ts.

See the Angular Module chapter for details and examples.

Annotation

In practice, a synonym for Decoration.

Attribute Directive

A category of Directive that can listen to and modify the behavior of
other HTML elements, attributes, properties, and components. They are usually represented
as HTML attributes, hence the name.

The ngClass directive for adding and removing CSS class names is a good example of
an Attribute Directive.

Barrel

A barrel is a way to rollup exports from several ES2015 modules into a single convenience ES2015 module.
The barrel itself is an ES2015 module file that re-exports selected exports of other ES2015 modules.

Imagine three ES2015 modules in a heroes folder:

// heroes/hero.component.ts
export class HeroComponent {}

// heroes/hero.model.ts
export class Hero {}

// heroes/hero.service.ts
export class HeroService {}Without a barrel, a consumer would need three import statements:

import { HeroComponent } from '../heroes/hero.component.ts';
import { Hero } from '../heroes/hero.model.ts';
import { HeroService } from '../heroes/hero.service.ts';We can add a barrel to the heroes folder (called index by convention) that exports all of these items:

export * from './hero.model.ts'; // re-export all of its exports
export * from './hero.service.ts'; // re-export all of its exports
export { HeroComponent } from './hero.component.ts'; // re-export the named thingNow a consumer can import what it needs from the barrel.

import { Hero, HeroService } from '../heroes'; // index is impliedThe Angular scoped packages each have a barrel named index.

That's why we can write this:

import { Component } from '@angular/core';
Note that you can often achieve this same goal using Angular modules instead.

Binding

Almost always refers to Data Binding and the act of
binding an HTML object property to a data object property.

May refer to a Dependency Injection binding
between a "token" or "key" and a dependency provider.
This more rare usage should be clear in context.

Bootstrap

We launch an Angular application by "bootstrapping" it using the application root Angular module (AppModule).
The bootstraping identifies an application's top level "root" Component, which is the first
component that is loaded for the application. For more information see the QuickStart.

One can bootstrap multiple apps in the same index.html, each with its own top level root.

camelCase

The practice of writing compound words or phrases such that each word or abbreviation begins with a capital letter
except the first letter which is a lowercase letter.

Function, property, and method names are typically spelled in camelCase. Examples include: square, firstName and getHeroes.

This form is also known as lower camel case, to distinguish it from upper camel case which we call PascalCase.
When we write "camelCase" in this documentation we always mean lower camel case.

Component

An Angular class responsible for exposing data
to a View and handling most of the view’s display
and user-interaction logic.

The Component is one of the most important building blocks in the Angular system.
It is, in fact, an Angular Directive with a companion Template.

The developer applies the @Component decorator to
the component class, thereby attaching to the class the essential component metadata
that Angular needs to create a component instance and render it with its template
as a view.

Those familiar with "MVC" and "MVVM" patterns will recognize
the Component in the role of "Controller" or "View Model".

dash-case

The practice of writing compound words or phrases such that each word is separated by a dash or hyphen (-).
This form is also known as kebab-case.

Directive selectors (like my-app) and
the root of filenames (such as hero-list.component.ts) are often
spelled in dash-case.

Data Binding

Applications display data values to a user and respond to user
actions (clicks, touches, keystrokes).

We could push application data values into HTML, attach
event listeners, pull changed values from the screen, and
update application data values ... all by hand.

Or we could declare the relationship between an HTML widget
and an application data source ... and let a data binding
framework handle the details.

Data Binding is that second approach. Angular has a rich
data binding framework with a variety of data binding
operations and supporting declaration syntax.

 The many forms of binding include:

Learn more about data binding in the
Template Syntax chapter.

Decorator | Decoration

A Decorator is a function that adds metadata to a class, its members (properties, methods) and function arguments.

Decorators are a JavaScript language feature, implemented in TypeScript and proposed for ES2016 (AKA ES7).

We apply a decorator by positioning it
immediately above or to the left of the thing it decorates.

Angular has its own set of decorators to help it interoperate with our application parts.
Here is an example of a @Component decorator that identifies a
class as an Angular Component and an @Input decorator applied to a property
of that component.
The elided object argument to the @Component decorator would contain the pertinent component metadata.

@Component({...})
export class AppComponent {
 constructor(@Inject('SpecialFoo') public foo:Foo) {}
 @Input() name:string;
}

The scope of a decorator is limited to the language feature
that it decorates. None of the decorations shown here will "leak" to other
classes appearing below it in the file.

Always include the parentheses () when applying a decorator.
A decorator is a function that must be called when applied.

Dependency Injection

Dependency Injection is both a design pattern and a mechanism
for creating and delivering parts of an application to other
parts of an application that request them.

Angular developers prefer to build applications by defining many simple parts
that each do one thing well and then wire them together at runtime.

These parts often rely on other parts. An Angular Component
part might rely on a service part to get data or perform a calculation. When a
part "A" relies on another part "B", we say that "A" depends on "B" and
that "B" is a dependency of "A".

We can ask a "Dependency Injection System" to create "A"
for us and handle all the dependencies.
If "A" needs "B" and "B" needs "C", the system resolves that chain of dependencies
and returns a fully prepared instance of "A".

Angular provides and relies upon its own sophisticated
Dependency Injection system
to assemble and run applications by "injecting" application parts
into other application parts where and when needed.

At the core there is an Injector that returns dependency values on request.
The expression injector.get(token) returns the value associated with the given token.

A token is an Angular type (OpaqueToken). We rarely deal with tokens directly; most
methods accept a class name (Foo) or a string ("foo") and Angular converts it
to a token. When we write injector.get(Foo), the injector returns
the value associated with the token for the Foo class, typically an instance of Foo itself.

Angular makes similar requests internally during many of its operations
as when it creates a Component for display.

The Injector maintains an internal map of tokens to dependency values.
If the Injector can't find a value for a given token, it creates
a new value using a Provider for that token.

A Provider is a recipe for
creating new instances of a dependency value associated with a particular token.

An injector can only create a value for a given token if it has
a Provider for that token in its internal provider registry.
Registering providers is a critical preparatory step.

Angular registers some of its own providers with every injector.
We can register our own providers.

Learn more in the Dependency Injection chapter.

Directive

An Angular class responsible for creating, re-shaping, and interacting with HTML elements
in the browser DOM. Directives are Angular's most fundamental feature.

A Directive is almost always associated with an HTML element or attribute.
We often refer to such an element or attribute as the directive itself.
When Angular finds a directive in an HTML template,
it creates the matching directive class instance
and gives that instance control over that portion of the browser DOM.

Developers can invent custom HTML markup (e.g., <my-directive>) to
associate with their custom directives. They add this custom markup to HTML templates
as if they were writing native HTML. In this way, directives become extensions of
HTML itself.

Directives fall into one of three categories:

	Components that combine application logic with an HTML template to
render application [views]. Components are usually represented as HTML elements.
They are the building blocks of an Angular application and the
developer can expect to write a lot of them.

	Attribute Directives that can listen to and modify the behavior of
other HTML elements, attributes, properties, and components. They are usually represented
as HTML attributes, hence the name.

	Structural Directives, a directive responsible for
shaping or re-shaping HTML layout, typically by adding, removing, or manipulating
elements and their children.

ECMAScript

The official JavaScript language specification.

The latest approved version of JavaScript is
ECMAScript 2016
(AKA "ES2016" or "ES7") and many Angular 2 developers will write their applications
either in this version of the language or a dialect that strives to be
compatible with it such as TypeScript.

Most modern browsers today only support the much older "ECMAScript 5" (AKA ES5) standard.
Applications written in ES2016, ES2015 or one of their dialects must be "transpiled"
to ES5 JavaScript.

Angular 2 developers may choose to write in ES5 directly.

ES2015

Short hand for "ECMAScript 2015".

ES6

Short hand for "ECMAScript 2015".

ES5

Short hand for "ECMAScript 5", the version of JavaScript run by most modern browsers.
See ECMAScript.

Injector

An object in the Angular dependency injection system
that can find a named "dependency" in its cache or create such a thing
with a registered provider.

Input

A directive property that can be the target of a
Property Binding.
Data values flow into this property from the data source identified
in the template expression to the right of the equal sign.

See the Template Syntax chapter.

Interpolation

A form of Property Data Binding in which a
template expression between double-curly braces
renders as text. That text may be concatenated with neighboring text
before it is assigned to an element property
or displayed between element tags as in this example.

My current hero is {{hero.name}}
Learn more about interpolation in the
Template Syntax chapter.

With Angular Just in Time bootstrapping you compile your components and modules in the browser
and launch the application dynamically. This is a good choice during development.
Consider the Ahead of Time mode for production apps.

kebab-case

Lifecycle Hooks

Directives and Components have a lifecycle
managed by Angular as it creates, updates and destroys them.

Developers can tap into key moments in that lifecycle by implementing
one or more of the "Lifecycle Hook" interfaces.

Each interface has a single hook method whose name is the interface name prefixed with ng.
For example, the OnInit interface has a hook method names ngOnInit.

Angular calls these hook methods in the following order:

	ngOnChanges - called when an input/output binding values change

	ngOnInit - after the first ngOnChanges

	ngDoCheck - developer's custom change detection

	ngAfterContentInit - after component content initialized

	ngAfterContentChecked - after every check of component content

	ngAfterViewInit - after component's view(s) are initialized

	ngAfterViewChecked - after every check of a component's view(s)

	ngOnDestroy - just before the directive is destroyed.

Learn more in the Lifecycle Hooks chapter.

Module

In Angular, there are two types of modules:

	Angular modules.
See the Angular Module chapter for details and examples.

	ES2015 modules as described in this section.

Angular apps are modular.

In general, we assemble our application from many modules, both the ones we write ourselves
and the ones we acquire from others.

A typical module is a cohesive block of code dedicated to a single purpose.

A module exports something of value in that code, typically one thing such as a class.
A module that needs that thing, imports it.

The structure of Angular modules and the import/export syntax
is based on the ES2015 module standard
described here.

An application that adheres to this standard requires a module loader to
load modules on request and resolve inter-module dependencies.
Angular does not ship with a module loader and does not have a preference
for any particular 3rd party library (although most samples use SystemJS).
Application developers may pick any module library that conforms to the standard

Modules are typically named after the file in which the exported thing is defined.
The Angular DatePipe
class belongs to a feature module named date_pipe in the file date_pipe.ts.

Developers rarely access Angular feature modules directly.
We usually import them from one of the Angular scoped packages such as @angular/core.

Observable

We can think of an observable as an array whose items arrive asynchronously over time.
Observables help us manage asynchronous data, such as data coming from a backend service.
Observables are used within Angular itself, including Angular's event system and its http client service.

To use observables, Angular uses a third-party library called Reactive Extensions (RxJS).
Observables are a proposed feature for ES 2016, the next version of JavaScript.

Output

A directive property that can be the target of an
Event Binding.
Events stream out of this property to the receiver identified
in the template expression to the right of the equal sign.

See the Template Syntax chapter.

PascalCase

The practice of writing compound words or phrases such that each word or abbreviation begins with a capital letter.
Class names are typically spelled in PascalCase. Examples include: Person and HeroDetailComponent.

This form is also known as upper camel case, to distinguish it from lower camel case which we simply call camelCase.
In this documentation, "PascalCase" means upper camel case and "camelCase" means lower camel case.

Pipe

An Angular pipe is a function that transforms input values to output values for
display in a view. We use the @Pipe decorator
to associate the pipe function with a name. We can then use that
name in our HTML to declaratively transform values on screen.

Here's an example that uses the built-in currency pipe to display
a numeric value in the local currency.

Price: {{product.price | currency}}Learn more in the chapter on pipes .

Provider

A Provider creates a new instance of a dependency for the
Dependency Injection system.
It relates a lookup token to code — sometimes called a "recipe" —
that can create a dependency value.

Reactive Forms

A technique for building Angular forms through code in a component.
The alternate technique is Template-Driven Forms.

When building reactive forms:

	The "source of truth" is the component. The validation is defined using code in the component.

	Each control is explicitly created in the component class with new FormControl() or with FormBuilder.

	The template input elements do not use ngModel.

	The associated Angular directives are all prefixed with Form such as FormGroup, FormControl, and FormControlName.

Reactive forms are powerful, flexible, and great for more complex data entry form scenarios, such as dynamic generation
of form controls.

Router

Most applications consist of many screens or views.
The user navigates among them by clicking links and buttons
and taking other similar actions that cause the application to
replace one view with another.

The Angular Component Router is a richly featured mechanism for configuring
and managing the entire view navigation process including the creation and destruction
of views.

In most cases, components becomes attached to a router by means
of a RouterConfig that defines routes to views.

A routing component's template has a RouterOutlet element
where it can display views produced by the router.

Other views in the application likely have anchor tags or buttons with RouterLink
directives that users can click to navigate.

See the Component Router chapter to learn more.

RouterModule

A separate Angular module that provides the necessary service providers and directives for navigating through application views.

See the Component Router chapter to learn more.

Routing Component

An Angular Component with a RouterOutlet that displays views based on router navigations.

See the Component Router chapter to learn more.

Scoped Package

Angular modules are delivered within scoped packages such as @angular/core, @angular/common, @angular/platform-browser-dynamic,
@angular/http, and @angular/router.

A scoped package is a way to group related npm packages.

We import a scoped package the same way we'd import a normal package.
The only difference, from a consumer perspective,
is that the package name begins with the Angular scope name, @angular.

import { Component } from '@angular/core';

snake_case

The practice of writing compound words or phrases such that each word is separated by an
underscore (_). This form is also known as underscore case.

Service

Components are great and all, but what do we do with data or logic that are not associated
with a specific view or that we want to share across components? We build services!

Applications often require services such as a hero data service or a logging service.
Our components depend on these services to do the heavy lifting.

A service is a class with a focused purpose.
We often create a service to implement features that are
independent from any specific view,
provide share data or logic across components, or encapsulate external interactions.

See the Services chapter of the tutorial to learn more.

Structural Directive

A category of Directive that can
shape or re-shape HTML layout, typically by adding, removing, or manipulating
elements and their children.

The ngIf "conditional element" directive and the ngFor "repeater" directive are
good examples in this category.

See the Structural Directives chapter to learn more.

Template

A template is a chunk of HTML that Angular uses to render a view with
the support and continuing guidance of an Angular Directive,
most notably a Component.

We write templates in a special Template Syntax.

Template-Driven Forms

A technique for building Angular forms using HTML forms and input elements in the view.
The alternate technique is Reactive Forms.

When building template-driven forms:

	The "source of truth" is the template. The validation is defined using attributes on the individual input elements.

	Two-way binding with ngModel keeps the component model in synchronization with the user's entry into the input elements.

	Behind the scenes, Angular creates a new control for each input element that has a name attribute and
two-way binding set up.

	The associated Angular directives are all prefixed with ng such as ngForm, ngModel, and ngModelGroup.

Template-driven forms are convenient, quick, and simple and are a good choice for many basic data entry form scenarios.

Learn how to build template-driven forms
in the Forms chapter.

Template Expression

An expression is a TypeScript-like syntax that Angular evaluates within
a data binding. Learn how to write template expressions
in the Template Syntax chapter.

Transpile

The process of transforming code written in one form of JavaScript
(e.g., TypeScript) into another form of JavaScript (e.g., ES5).

TypeScript

A version of JavaScript that supports most ECMAScript 2015
language features and many features that may arrive in future versions
of JavaScript such as Decorators.

TypeScript is also noteable for its optional typing system which gives
us compile-time type-checking and strong tooling support (e.g. "intellisense",
code completion, refactoring, and intelligent search). Many code editors
and IDEs support TypeScript either natively or with plugins.

TypeScript is the preferred language for Angular 2 development although
we are welcome to write in other JavaScript dialects such as ES5.

Learn more about TypeScript on its website.

View

A view is a portion of the screen that displays information and responds
to user actions such as clicks, mouse moves, and keystrokes.

Angular renders a view under the control of one or more Directives,
especially Component directives and their companion Templates.
The Component plays such a prominent role that we often
find it convenient to refer to a component as a view.

Views often contain other views and any view might be loaded and unloaded
dynamically as the user navigates through the application, typically
under the control of a router.

Zone

Zones are a mechanism for encapsulating and intercepting
a JavaScript application's asynchronous activity.

The browser DOM and JavaScript have a limited number
of asynchronous activities, activities such as DOM events (e.g., clicks),
promises, and
XHR
calls to remote servers.

Zones intercept all of these activities and give a "zone client" the opportunity
to take action before and after the async activity completes.

Angular runs our application in a zone where it can respond to
asynchronous events by checking for data changes and updating
the information it displays via data bindings.

Learn more about zones in this
Brian Ford video.

Angular Modules (NgModule)
Angular Modules help organize an application into cohesive blocks of functionality.

An Angular Module is a class adorned with the @NgModule decorator function.
@NgModule takes a metadata object that tells Angular how to compile and run module code.
It identifies the module's own components, directives and pipes,
making some of them public so external components can use them.
It may add service providers to the application dependency injectors.
And there are more options covered here.

This page explains how to create NgModule classes and how to load them,
either immediately when the application launches or later, as needed, via the Router.

Contents

	Angular modularity

	The application root module

	Bootstrap the root module

	Declarations

	Providers

	Imports

	Resolve conflicts

	Feature modules

	Lazy loaded modules with the Router

	Shared modules

	The Core module

	Configure core services with forRoot

	Prevent reimport of the CoreModule

	NgModule metadata properties

Live examples

This page explains Angular Modules through a progression of improvements to a sample with a "Tour of Heroes" theme.
Here's an index to live examples at key moments in the evolution of that sample:

	A minimal NgModule app

	The first contact module

	The revised contact module

	Just before adding SharedModule

	The final version

Frequently Asked Questions (FAQs)

This page covers Angular Module concepts in a tutorial fashion.

The companion Angular Module FAQs cookbook
offers ready answers to specific design and implementation questions.
Read this page first before hopping over to those FAQs.

 Angular Modularity

Modules are a great way to organize the application and extend it with capabilities from external libraries.

Many Angular libraries are modules (e.g, FormsModule, HttpModule, RouterModule).
Many third party libraries are available as Angular modules (e.g.,
Material Design,
Ionic,
AngularFire2).

Angular modules consolidate components, directives and pipes into
cohesive blocks of functionality, each focused on a
feature area, application business domain, workflow, or common collection of utilities.

Modules can also add services to the application.
Such services might be internally-developed such as the application logger.
They can come from outside sources such as the Angular router and Http client.

Modules can be loaded eagerly when the application starts.
They can also be lazy loaded asynchronously by the router.

An Angular module is a class decorated with @NgModule metadata. The metadata:

	declare which components, directives and pipes belong to the module.

	make some of those classes public so that other component templates can use them.

	import other modules with the components, directives and pipes needed by the components in this module.

	provide services at the application level that any application component can use.

Every Angular app has at least one module class, the root module.
We bootstrap that module to launch the application.

The root module is all we need in a simple application with a few components.
As the app grows, we refactor the root module into feature modules
that represent collections of related functionality.
We then import these modules into the root module.

We'll see how later in the page. Let's start with the root module.

 AppModule - the application root module

Every Angular app has a root module class.
By convention it's a class called AppModule in a file named app.module.ts.

This AppModule is about as minimal as it gets:

app/app.module.ts (minimal)
import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import
 { AppComponent } from './app.component';

@NgModule({
 imports: [BrowserModule],
 declarations: [AppComponent],
 bootstrap: [AppComponent]
})
export class AppModule { }
The @NgModule decorator defines the metadata for the module.
We'll take an intuitive approach to understanding the metadata and fill in details as we go.

This metadata imports a single helper module, BrowserModule, the module every browser app must import.

BrowserModule registers critical application service providers.
It also includes common directives like NgIf and NgFor which become immediately visible and usable
in any of this modules component templates.

The declarations list identifies the application's only component,
the root component, the top of this app's rather bare component tree.

The example AppComponent simply displays a data-bound title:

app/app.component.ts (minimal)
import { Component } from '@angular/core';

@Component({
 selector: 'my-app',
 template: '<h1>{{title}}</h1>',
})
export class AppComponent {
 title = 'Minimal NgModule';
}
Lastly, the @NgModule.bootstrap property identifies this AppComponent as the bootstrap component.
When Angular launches the app, it places the HTML rendering of AppComponent in the DOM,
inside the <my-app> element tags of the index.html

Bootstrapping in main.ts

We launch the application by bootstrapping the AppModule in the main.ts file.

Angular offers a variety of bootstrapping options, targeting multiple platforms.
In this page we consider two options, both targeting the browser.

In the first, dynamic option, the Angular compiler
compiles the application in the browser and then launches the app.

app/main.ts (dynamic)
// The browser platform with a compiler
import { platformBrowserDynamic } from '@angular/platform-browser-dynamic';

// The app module
import { AppModule } from './app.module';

// Compile and launch the module
platformBrowserDynamic().bootstrapModule(AppModule);
The samples in this page demonstrate the dynamic bootstrapping approach.

Try the live example.

Consider the static alternative which can produce a much smaller application that
launches faster, especially on mobile devices and high latency networks.

In the static option, the Angular compiler runs ahead of time as part of the build process,
producing a collection of class factories in their own files.
Among them is the AppModuleNgFactory.

The syntax for bootstrapping the pre-compiled AppModuleNgFactory is similar to
the dynamic version that bootstraps the AppModule class.

app/main.ts (static)
// The browser platform without a compiler
import { platformBrowser } from '@angular/platform-browser';

// The app module factory produced by the static offline compiler
import { AppModuleNgFactory } from './app.module.ngfactory';

// Launch with the app module factory.
platformBrowser().bootstrapModuleFactory(AppModuleNgFactory);
Because the entire application was pre-compiled,
we don't ship the Angular Compiler to the browser and we don't compile in the browser.

The application code downloaded to the browser is much smaller than the dynamic equivalent
and it is ready to execute immediately. The performance boost can be significant.

Both the JIT and AOT compilers generate an AppModuleNgFactory class from the same AppModule source code.
The JIT compiler creates that factory class on the fly, in memory, in the browser.
The AOT compiler outputs the factory to a physical file
that we're importing here in the static version of main.ts.

In general, the AppModule should neither know nor care how it is bootstrapped.

Although the AppModule evolves as the app grows, the bootstrap code in main.ts doesn't change.
This is the last time we'll look at main.ts.

Declare directives and components

The app evolves.
The first addition is a HighlightDirective, an attribute directive
that sets the background color of the attached element.

app/highlight.directive.ts
import { Directive, ElementRef, Renderer } from '@angular/core';

@Directive({ selector: '[highlight]' })
/** Highlight the attached element in gold */
export class HighlightDirective {
 constructor(renderer: Renderer, el: ElementRef) {
 renderer.setElementStyle(el.nativeElement, 'backgroundColor', 'gold');
 console.log(
 `* AppRoot highlight called for ${el.nativeElement.tagName}`);
 }
}
We update the AppComponent template to attach the directive to the title:

template: '<h1 highlight>{{title}}</h1>'
If we ran the app now, Angular would not recognize the highlight attribute and would ignore it.
We must declare the directive in AppModule.

Import the HighlightDirective class and add it to the module's declarations like this:

declarations: [
 AppComponent,
 HighlightDirective,
],
Add a component

We decide to refactor the title into its own TitleComponent.
The component's template binds to the component's title and subtitle properties like this:

app/title.component.html
<h1 highlight>{{title}} {{subtitle}}</h1>
app/title.component.ts
import { Component, Input } from '@angular/core';

@Component({
 selector: 'app-title',
 templateUrl: 'app/title.component.html',
})
export class TitleComponent {
 @Input() subtitle = '';
 title = 'Angular Modules';
}
We rewrite the AppComponent to display the new TitleComponent in the <app-title> element,
using an input binding to set the subtitle.

app/app.component.ts (v1)
import { Component } from '@angular/core';

@Component({
 selector: 'my-app',
 template: '<app-title [subtitle]="subtitle"></app-title>'
})
export class AppComponent {
 subtitle = '(v1)';
}
Angular won't recognize the <app-title> tag until we declare it in AppModule.
Import the TitleComponent class and add it to the module's declarations:

 declarations: [
 AppComponent,
 HighlightDirective,
 TitleComponent,
],
Service Providers

Modules are a great way to provide services for all of the module's components.

The Dependency Injection page describes
the Angular hierarchical dependency injection system and how to configure that system
with providers at different levels of the
application's component tree.

A module can add providers to the application's root dependency injector, making those services
available everywhere in the application.

Many applications capture information about the currently logged-in user and make that information
accessible through a user service.
This sample application has a dummy implementation of such a UserService.

app/user.service.ts
import { Injectable } from '@angular/core';

@Injectable()
/** Dummy version of an authenticated user service */
export class UserService {
 userName = 'Sherlock Holmes';
}
The sample application should display a welcome message to the logged in user just below the application title.
Update the TitleComponent template to show the welcome message below the application title.

app/title.component.html
<h1 highlight>{{title}} {{subtitle}}</h1>
<p *ngIf="user">
 <i>Welcome, {{user}}</i>
<p>
Update the TitleComponent class with a constructor that injects the UserService
and sets the component's user property from the service.

app/title.component.ts
import { Component, Input } from '@angular/core';
import { UserService } from './user.service';

@Component({
 selector: 'app-title',
 templateUrl: 'app/title.component.html',
})
export class TitleComponent {
 @Input() subtitle = '';
 title = 'Angular Modules';
 user = '';

 constructor(userService: UserService) {
 this.user = userService.userName;
 }
}
We've defined and used the service. Now we provide it for all components to use by
adding it to a providers property in the AppModule metadata:

app/app.module.ts (providers)
providers: [UserService],
Import supporting modules

The app shouldn't welcome a user if there is no user.

Notice in the revised TitleComponent that an *ngIf directive guards the message.
There is no message if there is no user.

app/title.component.html (ngIf)
<p *ngIf="user">
 <i>Welcome, {{user}}</i>
<p>
Although AppModule doesn't declare NgIf, the application still compiles and runs.
How can that be? The Angular compiler should either ignore or complain about unrecognized HTML.

Angular does recognize NgIf because we imported it earlier.
The initial version of AppModule imports BrowserModule.

app/app.module.ts (imports)
imports: [BrowserModule],
Importing BrowserModule made all of its public components, directives and pipes visible
to the component templates in AppModule. They are ready to use without further ado.

More accurately, NgIf is declared in CommonModule from @angular/common.

CommonModule contributes many of the common directives that applications need including ngIf and ngFor.

BrowserModule imports CommonModule and re-exports it.
The net effect is that an importer of BrowserModule gets CommonModule directives automatically.

Many familiar Angular directives do not belong toCommonModule.
For example, NgModel and RouterLink belong to Angular's FormsModule and RouterModule respectively.
We must import those modules before we can use their directives.

To illustrate this point, we extend the sample app with ContactComponent,
a form component that imports form support from the Angular FormsModule.

Angular Forms are a great way to manage user data entry.

The ContactComponent presents a "contact editor",
implemented with Angular Forms in the template-driven form style.

Angular Form Styles

We write Angular form components in either the
template-driven form style or
the reactive form style.

This sample is about to import the FormsModule from @angular/forms because
the ContactComponent is written in the template-driven style.
Modules with components written in the reactive style,
should import the ReactiveFormsModule instead.

The ContactComponent selector matches an element named <app-contact>.
Add an element with that name to the AppComponent template just below the <app-title>:

app/app.component.ts (template)
template: `
 <app-title [subtitle]="subtitle"></app-title>
 <app-contact></app-contact>
`
The ContactComponent has a lot going on.
Form components are often complex anyway and this one has its own ContactService,
its own custom pipe called Awesome,
and an alternative version of the HighlightDirective.

To make it manageable, we place all contact-related material in an app/contact folder
and break the component into three constituent HTML, TypeScript, and css files:

<h2>Contact of {{userName}}</h2>
<div *ngIf="msg" class="msg">{{msg}}</div>

<form *ngIf="contacts" (ngSubmit)="onSubmit()" #contactForm="ngForm">
 <h3 highlight>{{ contact.name | awesome }}</h3>
 <div class="form-group">
 <label for="name">Name</label>
 <input type="text" class="form-control" required
 [(ngModel)]="contact.name"
 name="name" #name="ngModel" >
 <div [hidden]="name.valid" class="alert alert-danger">
 Name is required
 </div>
 </div>

 <button type="submit" class="btn btn-default" [disabled]="!contactForm.form.valid">Save</button>
 <button type="button" class="btn" (click)="next()" [disabled]="!contactForm.form.valid">Next Contact</button>
 <button type="button" class="btn" (click)="newContact()">New Contact</button>
</form>
import { Component, OnInit } from '@angular/core';

import { Contact, ContactService } from './contact.service';
import { UserService } from '../user.service';

@Component({
 selector: 'app-contact',
 templateUrl: 'app/contact/contact.component.html',
 styleUrls: ['app/contact/contact.component.css']
})
export class ContactComponent implements OnInit {
 contact: Contact;
 contacts: Contact[];

 msg = 'Loading contacts ...';
 userName = '';

 constructor(private contactService: ContactService, userService: UserService) {
 this.userName = userService.userName;
 }

 ngOnInit() {
 this.contactService.getContacts().then(contacts => {
 this.msg = '';
 this.contacts = contacts;
 this.contact = contacts[0];
 });
 }

 next() {
 let ix = 1 + this.contacts.indexOf(this.contact);
 if (ix >= this.contacts.length) { ix = 0; }
 this.contact = this.contacts[ix];
 }

 onSubmit() {
 // TODO: do something like save it
 this.displayMessage('Saved ' + this.contact.name);
 }

 newContact() {
 this.displayMessage('New contact');
 this.contact = {id: 42, name: ''};
 this.contacts.push(this.contact);
 }

 /** Display a message briefly, then remove it. */
 displayMessage(msg: string) {
 this.msg = msg;
 setTimeout(() => this.msg = '', 1500);
 }
}
.ng-valid[required] {
 border-left: 5px solid #42A948; /* green */
}

.ng-invalid {
 border-left: 5px solid #a94442; /* red */
}

.alert {
 padding: 15px;
 margin: 8px 0;
 border: 1px solid transparent;
 border-radius: 4px;
}
.alert-danger {
 color: #a94442;
 background-color: #f2dede;
 border-color: #ebccd1;
}

.msg {
 color: blue;
 background-color: whitesmoke;
 border: 1px solid transparent;
 border-radius: 4px;
 margin-bottom: 20px;
}
import { Injectable } from '@angular/core';

export class Contact {
 constructor(public id: number, public name: string) { }
}

const CONTACTS: Contact[] = [
 new Contact(21, 'Sam Spade'),
 new Contact(22, 'Nick Danger'),
 new Contact(23, 'Nancy Drew')
];

const FETCH_LATENCY = 500;

@Injectable()
export class ContactService {

 getContacts() {
 return new Promise<Contact[]>(resolve => {
 setTimeout(() => { resolve(CONTACTS); }, FETCH_LATENCY);
 });
 }

 getContact(id: number | string) {
 return this.getContacts()
 .then(heroes => heroes.find(hero => hero.id === +id));
 }
}
import { Pipe, PipeTransform } from '@angular/core';

@Pipe({ name: 'awesome' })
/** Precede the input string with the word "Awesome " */
export class AwesomePipe implements PipeTransform {
 transform(phrase: string) {
 return phrase ? 'Awesome ' + phrase : '';
 }
}
import { Directive, ElementRef, Renderer } from '@angular/core';

@Directive({ selector: '[highlight], input' })
/** Highlight the attached element or an InputElement in blue */
export class HighlightDirective {
 constructor(renderer: Renderer, el: ElementRef) {
 renderer.setElementStyle(el.nativeElement, 'backgroundColor', 'powderblue');
 console.log(
 `* Contact highlight called for ${el.nativeElement.tagName}`);
 }
}
Focus on the component template.
Notice the two-way data binding [(ngModel)] in the middle of the template.
ngModel is the selector for the NgModel directive.

Although NgModel is an Angular directive, the Angular Compiler won't recognize it
because (a) AppModule doesn't declare it and (b) it wasn't imported via BrowserModule.

Less obviously, even if Angular somehow recognized ngModel,
this ContactComponent would not behave like an Angular form because
form features such as validation are not yet available.

Import the FormsModule

Add the FormsModule to the AppModule metadata's imports list.

imports: [BrowserModule, FormsModule],
Now [(ngModel)] binding will work and the user input will be validated by Angular Forms,
once we declare our new component, pipe and directive.

Do not add NgModel — or the FORMS_DIRECTIVES —
to the AppModule metadata's declarations!

These directives belong to the FormsModule.
Components, directives and pipes belong to one module — and one module only.

Never re-declare classes that belong to another module.

The application fails to compile until we declare the contact component, directive and pipe.
Update the declarations in the AppModule accordingly:

app/app.module.ts (declarations)
 declarations: [
 AppComponent,
 HighlightDirective,
 TitleComponent,

 AwesomePipe,
 ContactComponent,
 ContactHighlightDirective
],
There are two directives with the same name, both called HighlightDirective.

We work around it by creating an alias for the second, contact version using the as JavaScript import keyword:

import {
 HighlightDirective as ContactHighlightDirective
} from './contact/highlight.directive';
This solves the immediate problem of referencing both directive types in the same file but
leaves another problem unresoved as we discuss below.

The ContactComponent displays contacts retrieved by the ContactService
which Angular injects into its constructor.

We have to provide that service somewhere.
The ContactComponent could provide it.
But then it would be scoped to this component only.
We want to share this service with other contact-related components that we will surely add later.

In this app we chose to add ContactService to the AppModule metadata's providers list:

app/app.module.ts (providers)
providers: [ContactService, UserService],
Now ContactService (like UserService) can be injected into any component in the application.

Application-scoped Providers

 The ContactService provider is application-scoped because Angular
 registers a module's providers with the application's root injector.

 Architecturally, the ContactService belongs to the Contact business domain.
 Classes in other domains don't need the ContactService and shouldn't inject it.

 We might expect Angular to offer a module-scoping mechanism to enforce this design.
 It doesn't. Angular module instances, unlike components, do not have their own injectors
 so they can't have their own provider scopes.

 This omission is intentional.
 Angular modules are designed primarily to extend an application,
 to enrich the entire app with the module's capabilities.

 Service scoping is rarely a problem in practice.
 Non-contact components can't inject the ContactService by accident.
 To inject ContactService, you must first import its type.
 Only Contact components should import the ContactService type.

 See the FAQ that pursues this issue
 and its mitigations in greater detail.

Run the app

Everything is now in place to run the application with its contact editor.

The app file structure looks like this:

app
app.component.ts
app.module.ts
highlight.directive.ts
main.ts
title.component.(html|ts)
user.service.ts
contact
awesome.pipe.ts
contact.component.(css|html|ts)
contact.service.ts
highlight.directive.ts

Try the example:

Resolve directive conflicts

We ran into trouble above when we declared the contact's HighlightDirective because
we already had a HighlightDirective class at the application level.

That both directives have the same name smells of trouble.

A look at their selectors reveals that they both highlight the attached element with a different color.

import { Directive, ElementRef, Renderer } from '@angular/core';

@Directive({ selector: '[highlight]' })
/** Highlight the attached element in gold */
export class HighlightDirective {
 constructor(renderer: Renderer, el: ElementRef) {
 renderer.setElementStyle(el.nativeElement, 'backgroundColor', 'gold');
 console.log(
 `* AppRoot highlight called for ${el.nativeElement.tagName}`);
 }
}
import { Directive, ElementRef, Renderer } from '@angular/core';

@Directive({ selector: '[highlight], input' })
/** Highlight the attached element or an InputElement in blue */
export class HighlightDirective {
 constructor(renderer: Renderer, el: ElementRef) {
 renderer.setElementStyle(el.nativeElement, 'backgroundColor', 'powderblue');
 console.log(
 `* Contact highlight called for ${el.nativeElement.tagName}`);
 }
}
Will Angular use only one of them? No.
Both directives are declared in this module so both directives are active.

When the two directives compete to color the same element,
the directive declared later wins because its DOM changes overwrite the first.
In this case, the contact's HighlightDirective colors the application title text blue
when it should stay gold.

The real problem is that there are two different classes trying to do the same thing.

It's OK to import the same directive class multiple times.
Angular removes duplicate classes and only registers one of them.

But these are actually two different classes, defined in different files, that happen to have the same name.

They're not duplicates from Angular's perspective. Angular keeps both directives and
they take turns modifying the same HTML element.

At least the app still compiles.
If we define two different component classes with the same selector specifying the same element tag,
the compiler reports an error. It can't insert two components in the same DOM location.

What a mess!

We can eliminate component and directive conflicts by creating feature modules
that insulate the declarations in one module from the declarations in another.

Feature Modules

This application isn't big yet. But it's already suffering structural problems.

	The root AppModule grows larger with each new application class and shows no signs of stopping.

	We have conflicting directives.
The HighlightDirective in contact is re-coloring the work done by the HighlightDirective declared in AppModule.
And it's coloring the application title text when it should only color the ContactComponent.

	The app lacks clear boundaries between contact functionality and other application features.
That lack of clarity makes it harder to assign development responsibilities to different teams.

We mitigate these problems with feature modules.

Feature Module

A feature module is a class adorned by the @NgModule decorator and its metadata,
just like a root module.
Feature module metadata have the same properties as the metadata for a root module.

The root module and the feature module share the same execution context.
They share the same dependency injector which means the services in one module
are available to all.

There are two significant technical differences:

	We boot the root module to launch the app;
we import a feature module to extend the app.

	A feature module can expose or hide its implementation from other modules.

Otherwise, a feature module is distinguished primarily by its intent.

A feature module delivers a cohesive set of functionality
focused on an application business domain, a user workflow, a facility (forms, http, routing),
or a collection of related utilities.

While we can do everything within the root module,
feature modules help us partition the app into areas of specific interest and purpose.

A feature module collaborates with the root module and with other modules
through the services it provides and
the components, directives, and pipes that it chooses to share.

In the next section, we carve the contact functionality out of the root module
and into a dedicated feature module.

It's easy to refactor the contact material into a contact feature module.

	Create the ContactModule in the app/contact folder.

	Move the contact material from AppModule to ContactModule.

	Replace the imported BrowserModule with CommonModule.

	Import the ContactModule into the AppModule.

AppModule is the only existing class that changes. But we do add one new file.

Here's the new ContactModule

app/contact/contact.module.ts
import { NgModule } from '@angular/core';
import { CommonModule } from '@angular/common';
import { FormsModule } from '@angular/forms';

import { AwesomePipe } from './awesome.pipe';

import
 { ContactComponent } from './contact.component';
import { ContactService } from './contact.service';
import { HighlightDirective } from './highlight.directive';

@NgModule({
 imports: [CommonModule, FormsModule],
 declarations: [ContactComponent, HighlightDirective, AwesomePipe],
 exports: [ContactComponent],
 providers: [ContactService]
})
export class ContactModule { }
We copy from AppModule the contact-related import statements and the @NgModule properties
that concern the contact and paste them in ContactModule.

We import the FormsModule because the contact component needs it.

Modules do not inherit access to the components, directives or pipes that are declared in other modules.
What AppModule imports is irrelevant to ContactModule and vice versa.
Before ContactComponent can bind with [(ngModel)], its ContactModule must import FormsModule.

We also replaced BrowserModule by CommonModule for reasons explained in
an FAQ.

We declare the contact component, directive, and pipe in the module declarations.

We export the ContactComponent so
other modules that import the ContactModule can include it in their component templates.

All other declared contact classes are private by default.
The AwesomePipe and HighlightDirective are hidden from the rest of the application.
The HighlightDirective can no longer color the AppComponent title text.

Refactor the AppModule

Return to the AppModule and remove everything specific to the contact feature set.

Delete the contact import statements.
Delete the contact declarations and contact providers.
Remove the FormsModule from the imports list (AppComponent doesn't need it).
Leave only the classes required at the application root level.

Then import the ContactModule so the app can continue to display the exported ContactComponent.

Here's the refactored version of the AppModule side-by-side with the previous version.

import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

/* App Root */
import
 { AppComponent } from './app.component';
import { HighlightDirective } from './highlight.directive';
import { TitleComponent } from './title.component';
import { UserService } from './user.service';

/* Contact Imports */
import
 { ContactModule } from './contact/contact.module';

@NgModule({
 imports: [BrowserModule, ContactModule],
 declarations: [AppComponent, HighlightDirective, TitleComponent],
 providers: [UserService],
 bootstrap: [AppComponent],
})
export class AppModule { }
import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

/* App Root */
import
 { AppComponent } from './app.component';
import { HighlightDirective } from './highlight.directive';
import { TitleComponent } from './title.component';
import { UserService } from './user.service';

/* Contact Imports */
import
 { ContactComponent } from './contact/contact.component';
import { ContactService } from './contact/contact.service';
import { AwesomePipe } from './contact/awesome.pipe';

import {
 HighlightDirective as ContactHighlightDirective
} from './contact/highlight.directive';

import { FormsModule } from '@angular/forms';

@NgModule({
 imports: [BrowserModule, FormsModule],
 declarations: [
 AppComponent, HighlightDirective, TitleComponent,
 AwesomePipe, ContactComponent, ContactHighlightDirective
],
 providers: [ContactService, UserService],
 bootstrap: [AppComponent]
})
export class AppModule { }
Improvements

There's a lot to like in the revised AppModule

	It does not change as the Contact domain grows.

	It only changes when we add new modules.

	It's simpler:
	Fewer import statements

	No FormsModule import

	No contact-specific declarations

	No ContactService provider

	No HighlightDirective conflict

Try this ContactModule version of the sample.

Try the live example.

Lazy loading modules with the Router

The Heroic Staffing Agency sample app has evolved.
It has two more modules, one for managing the heroes-on-staff and another for matching crises to the heroes.
Both modules are in the early stages of development.
Their specifics aren't important to the story and we won't discuss every line of code.

Examine and download the complete source for this version from the

live example.

Some facets of the current application merit discussion.

	The app has three feature modules: Contact, Hero, and Crisis.

	The Angular router helps users navigate among these modules.

	The ContactComponent is the default destination when the app starts.

	The ContactModule continues to be "eagerly" loaded when the application starts.

	HeroModule and the CrisisModule are lazy loaded.

Let's start at the top with the new AppComponent template:
a title, three links, and a <router-outlet>.

app/app.component.ts (v3 - Template)
template: `
 <app-title [subtitle]="subtitle"></app-title>
 <nav>
 Contact
 Crisis Center
 Heroes
 </nav>
 <router-outlet></router-outlet>
`
The <app-contact> element is gone; we're routing to the Contact page now.

The AppModule has changed modestly:

app/app.module.ts (v3)
import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

/* App Root */
import { AppComponent } from './app.component.3';
import { HighlightDirective } from './highlight.directive';
import { TitleComponent } from './title.component';
import { UserService } from './user.service';

/* Feature Modules */
import { ContactModule } from './contact/contact.module.3';
import { routing } from './app.routing.3';

@NgModule({
 imports: [
 BrowserModule,
 ContactModule,
 routing
],
 providers: [UserService],
 declarations: [AppComponent, HighlightDirective, TitleComponent],
 bootstrap: [AppComponent]
})
export class AppModule { }
Some file names bear a .3 extension indicating
a difference with prior or future versions.
We'll explain differences that matter in due course.

The module still imports ContactModule so that its routes and components are mounted when the app starts.

The module does not import HeroModule or CrisisModule.
They'll be fetched and mounted asynchronously when the user navigates to one of their routes.

The significant change from version 2 is the addition of a routing object to the imports.
The routing object, which provides a configured Router service, is defined in the app.routing.ts file.

App routing

app/app.routing.ts
import { ModuleWithProviders } from '@angular/core';
import { Routes, RouterModule } from '@angular/router';

export const routes: Routes = [
 { path: '', redirectTo: 'contact', pathMatch: 'full'},
 { path: 'crisis', loadChildren: 'app/crisis/crisis.module#CrisisModule' },
 { path: 'heroes', loadChildren: 'app/hero/hero.module#HeroModule' }
];

export const routing: ModuleWithProviders = RouterModule.forRoot(routes);
The router is the subject of its own page so we'll skip lightly over the details and
concentrate on the intersection of Angular modules and routing.

This file defines three routes.

The first redirects the empty URL (e.g., http://host.com/)
to another route whose path is contact (e.g., http://host.com/contact).

The contact route isn't defined here.
It's defined in the Contact feature's own routing file, contact.routing.ts.
It's standard practice for feature modules with routing components to define their own routes.
We'll get to that file in a moment.

The remaining two routes use lazy loading syntax to tell the router where to find the modules:

{ path: 'crisis', loadChildren: 'app/crisis/crisis.module#CrisisModule' },
{ path: 'heroes', loadChildren: 'app/hero/hero.module#HeroModule' }
A lazy loaded module location is a string, not a type.
In this app, the string identifies both the module file and the module class,
the latter separated from the former by a #.

RouterModule.forRoot

The last line calls the forRoot static class method of the RouterModule, passing in the configuration.

export const routing: ModuleWithProviders = RouterModule.forRoot(routes);
The returned routing object is a ModuleWithProviders containing both the RouterModule directives
and the Dependency Injection providers that produce a configured Router.

This routing object is intended for the app root module only.

Never call RouterModule.forRoot in a feature module.

Back in the root AppModule, we add this routing object to its imports list,
and the app is ready to navigate.

app/app.module.ts (imports)
imports: [
 BrowserModule,
 ContactModule,
 routing
],
Routing to a feature module

The app/contact folder holds a new file, contact.routing.ts.
It defines the contact route we mentioned a bit earlier and also creates a routing object like so:

app/contact/contact.routing.ts (routing)
export const routing: ModuleWithProviders = RouterModule.forChild([
 { path: 'contact', component: ContactComponent}
]);
This time we pass the route list to the forChild method of the RouterModule.
It produces a different kind of object intended for feature modules.

Always call RouterModule.forChild in a feature module.

forRoot and forChild are conventional names for methods that
deliver different import values to root and feature modules.
Angular doesn't recognize them but Angular developers do.

Follow this convention if you write a similar module
that has both shared declarables and services.

ContactModule has changed in two small but important details

@NgModule({
 imports: [CommonModule, FormsModule, routing],
 declarations: [ContactComponent, HighlightDirective, AwesomePipe],
 providers: [ContactService]
})
export class ContactModule { }
@NgModule({
 imports: [CommonModule, FormsModule],
 declarations: [ContactComponent, HighlightDirective, AwesomePipe],
 exports: [ContactComponent],
 providers: [ContactService]
})
export class ContactModule { }

	It imports the routing object from contact.routing.ts

	It no longer exports ContactComponent

Now that we navigate to ContactComponent with the router there's no reason to make it public.
Nor does it need a selector.
No template will ever again reference this ContactComponent.
It's gone from the AppComponent template.

Lazy loaded routing to a module

The lazy loaded HeroModule and CrisisModule follow the same principles as any feature module.
They don't look different from the eagerly loaded ContactModule.

The HeroModule is a bit more complex than the CrisisModule which makes it
a more interesting and useful example. Here's its file structure:

hero
hero-detail.component.ts
hero-list.component.ts
hero.component.ts
hero.module.ts
hero.routing.ts
hero.service.ts
highlight.directive.ts

This is the child routing scenario familiar to readers of the Router page.
The HeroComponent is the feature's top component and routing host.
Its template has a <router-outlet> that displays either a list of heroes (HeroList)
or an editor of a selected hero (HeroDetail).
Both components delegate to the HeroService to fetch and save data.

There's yet another HighlightDirective that colors elements in yet a different shade.
We should do something about the repetition and inconsistencies.
We endure for now.

The HeroModule is a feature module like any other.

app/hero/hero.module.ts (class)
@NgModule({
 imports: [CommonModule, FormsModule, routing],
 // TODO: Remove in RC 6
 providers: [HeroService],
 declarations: [
 HeroComponent, HeroDetailComponent, HeroListComponent,
 HighlightDirective
]
})
export class HeroModule { }
It imports the FormsModule because the HeroDetailComponent template binds with [(ngModel)].
It imports a routing object from hero.routing.ts just as ContactModule and CrisisModule do.

The CrisisModule is much the same. There's nothing more to say that's new.

Try the live example.

Shared modules

The app is shaping up.
One thing we don't like is carrying three different versions of the HighlightDirective.
And there's a bunch of other stuff cluttering the app folder level that could be tucked away.

Let's add a SharedModule to hold the common components, directives, and pipes
and share them with the modules that need them.

	create an app/shared folder

	move the AwesomePipe and HighlightDirective from app/contact to app/shared.

	delete the HighlightDirective classes from app/ and app/hero

	create a SharedModule class to own the shared material

	update other feature modules to import SharedModule

Most of this is familiar blocking and tackling. Here is the SharedModule

app/app/shared/shared.module.ts
import { NgModule } from '@angular/core';
import { CommonModule } from '@angular/common';
import { FormsModule } from '@angular/forms';

import { AwesomePipe } from './awesome.pipe';
import { HighlightDirective } from './highlight.directive';

@NgModule({
 imports: [CommonModule],
 declarations: [AwesomePipe, HighlightDirective],
 exports: [AwesomePipe, HighlightDirective,
 CommonModule, FormsModule]
})
export class SharedModule { }
Some highlights

	It imports the CommonModule because its component needs common directives.

	It declares and exports the utility pipe, directive, and component classes as expected.

	It re-exports the CommonModule and FormsModule

Re-exporting other modules

While reviewing our application, we noticed that many components requiring SharedModule directives
also use NgIf and NgFor from CommonModule
and bind to component properties with [(ngModel)], a directive in the FormsModule.
Modules that declare these components would have to import CommonModule, FormsModule and SharedModule.

We can reduce the repetition by having SharedModule re-export CommonModule and FormsModule
so that importers of SharedModule get CommonModule and FormsModule for free.

As it happens, the components declared by SharedModule itself don't bind with [(ngModel)].
Technically, there is no need for SharedModule to import FormsModule.

SharedModule can still export FormsModule without listing it among its imports.

Why TitleComponent isn't shared

SharedModule exists to make commonly used components, directives and pipes available
for use in the templates of components in many other modules.

The TitleComponent is used only once by the AppComponent.
There's no point in sharing it.

Why UserService isn't shared

While many components share the same service instances,
they rely on Angular dependency injection to do this kind of sharing, not the module system.

Several components of our sample inject the UserService.
There should be only one instance of the UserService in the entire application
and only one provider of it.

UserService is an application-wide singleton.
We don't want each module to have its own separate instance.
Yet there is a real danger of that happening
if the SharedModule provides the UserService.

Do not specify app-wide singleton providers in a shared module.
A lazy loaded module that imports that shared module will make its own copy of the service.

The Core module

At the moment, our root folder is cluttered with the UserService
and the TitleComponent that only appears in the root AppComponent.
We did not include them in the SharedModule for reasons just explained.

Instead, we'll gather them in a single CoreModule that we import once when the app starts
and never import anywhere else.

Steps:

	create an app/core folder

	move the UserService and TitleComponent from app/ to app/core

	create a CoreModule class to own the core material

	update the AppRoot module to import CoreModule

Again, most of this is familiar blocking and tackling. The interesting part is the CoreModule

app/app/core/core.module.ts
import {
 ModuleWithProviders, NgModule,
 Optional, SkipSelf } from '@angular/core';

import { CommonModule } from '@angular/common';

import { TitleComponent } from './title.component';
import { UserService } from './user.service';
@NgModule({
 imports: [CommonModule],
 declarations: [TitleComponent],
 exports: [TitleComponent],
 providers: [UserService]
})
export class CoreModule {
}
We're importing some extra symbols from the Angular core library that we're not using yet.
They'll become relevant later in this page.

The @NgModule metadata should be familiar.
We declare the TitleComponent because this module owns it and we export it
because AppComponent (which is in AppModule) displays the title in its template.
TitleComponent needs the Angular NgIf directive that we import from CommonModule.

CoreModule provides the UserService. Angular registers that provider with the app root injector,
making a singleton instance of the UserService available to any component that needs it,
whether that component is eagerly or lazily loaded.

Why bother?

This scenario is clearly contrived.
The app is too small to worry about a single service file and a tiny, one-time component.

A TitleComponent sitting in the root folder isn't bothering anyone.
The root AppModule can register the UserService itself,
as it does currently, even if we decide to relocate the UserService file to the app/core folder.

Real world apps have more to worry about.
They can have several single-use components (e.g., spinners, message toasts, and modal dialogs)
that appear only in the AppComponent template.
We don't import them elsewhere so they're not shared in that sense.
Yet they're too big and messy to leave loose in the root folder.

Apps often have many singleton services like this sample's UserService.
Each must be registered exactly once, in the app root injector, when the application starts.

While many Components inject such services in their constructors —
and therefore require JavaScript import statements to import their symbols —
no other component or module should define or re-create the services themselves.
Their providers are not shared.

We recommend collecting such single-use classes and hiding their gory details inside a CoreModule.
A simplified root AppModule imports CoreModule in its capacity as orchestrator of the application as a whole.

Cleanup

Having refactored to a CoreModule and a SharedModule, it's time to cleanup the other modules.

A trimmer AppModule

Here is the updated AppModule paired with version 3 for comparison:

import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

/* App Root */
import { AppComponent } from './app.component';

/* Feature Modules */
import { ContactModule } from './contact/contact.module';
import { CoreModule } from './core/core.module';
import { routing } from './app.routing';

@NgModule({
 imports: [
 BrowserModule,
 ContactModule,
 CoreModule,
 routing
],
 declarations: [AppComponent],
 bootstrap: [AppComponent]
})
export class AppModule { }
import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

/* App Root */
import { AppComponent } from './app.component.3';
import { HighlightDirective } from './highlight.directive';
import { TitleComponent } from './title.component';
import { UserService } from './user.service';

/* Feature Modules */
import { ContactModule } from './contact/contact.module.3';
import { routing } from './app.routing.3';

@NgModule({
 imports: [
 BrowserModule,
 ContactModule,
 routing
],
 providers: [UserService],
 declarations: [AppComponent, HighlightDirective, TitleComponent],
 bootstrap: [AppComponent]
})
export class AppModule { }
Notice that AppModule is ...

	a little smaller because many app/root classes have moved to other modules.

	stable because we'll add future components and providers to other modules, not this one.

	delegating to imported modules rather than doing work.

	focused on its main task, orchestrating the app as a whole.

Here is the new ContactModule paired with the prior version:

import { NgModule } from '@angular/core';
import { SharedModule } from '../shared/shared.module';

import { ContactComponent } from './contact.component';
import { ContactService } from './contact.service';
import { routing } from './contact.routing';

@NgModule({
 imports: [SharedModule, routing],
 declarations: [ContactComponent],
 providers: [ContactService]
})
export class ContactModule { }
import { NgModule } from '@angular/core';
import { CommonModule } from '@angular/common';
import { FormsModule } from '@angular/forms';

import { AwesomePipe } from './awesome.pipe';

import { ContactComponent } from './contact.component.3';
import { ContactService } from './contact.service';
import { HighlightDirective } from './highlight.directive';

import { routing } from './contact.routing.3';

@NgModule({
 imports: [CommonModule, FormsModule, routing],
 declarations: [ContactComponent, HighlightDirective, AwesomePipe],
 providers: [ContactService]
})
export class ContactModule { }
Notice that

	The AwesomePipe and HighlightDirective are gone.

	The imports include SharedModule instead of CommonModule and FormsModule

	This new version is leaner and cleaner.

Configure core services with CoreModule.forRoot

A module that adds providers to the application can offer a facility for configuring those providers as well.

By convention, the forRoot static method both provides and configures services at the same time.
It takes a service configuration object and returns a
ModuleWithProviders which is
a simple object with two properties:

	ngModule - the CoreModule class

	providers - the configured providers

The root AppModule imports the CoreModule and adds the providers to the AppModule providers.

More precisely, Angular accumulates all imported providers before appending the items listed in @NgModule.providers.
This sequence ensures that whatever we add explicitly to the AppModule providers takes precedence
over the providers of imported modules.

Let's add a CoreModule.forRoot method that configures the core UserService.

We've extended the core UserService with an optional, injected UserServiceConfig.
If a UserServiceConfig exists, the UserService sets the user name from that config.

app/core/user.service.ts (constructor)
constructor(@Optional() config: UserServiceConfig) {
 if (config) { this._userName = config.userName; }
}
Here's CoreModule.forRoot that takes a UserServiceConfig object:

app/core/core.module.ts (forRoot)
static forRoot(config: UserServiceConfig): ModuleWithProviders {
 return {
 ngModule: CoreModule,
 providers: [
 {provide: UserServiceConfig, useValue: config }
]
 };
}
Lastly, we call it within the imports list of the AppModule.

app//app.module.ts (imports)
 imports: [
 BrowserModule,
 ContactModule,
 CoreModule.forRoot({userName: 'Miss Marple'}),
 routing
],
The app displays "Miss Marple" as the user instead of the default "Sherlock Holmes".

Call forRoot only in the root application module, AppModule.
Calling it in any other module, particularly in a lazy loaded module,
is contrary to the intent and is likely to produce a runtime error.

Remember to import the result; don't add it to any other @NgModule list.

Prevent reimport of the CoreModule

Only the root AppModule should import the CoreModule.
Bad things happen if a lazy loaded module imports it.

We could hope that no developer makes that mistake.
Or we can guard against it and fail fast by adding the following CoreModule constructor.

constructor (@Optional() @SkipSelf() parentModule: CoreModule) {
 if (parentModule) {
 throw new Error(
 'CoreModule is already loaded. Import it in the AppModule only');
 }
}
The constructor tells Angular to inject the CoreModule into itself.
That seems dangerously circular.

The injection would be circular if Angular looked for CoreModule in the current injector.
The @SkipSelf decorator means "look for CoreModule in an ancestor injector, above me in the injector hierarchy."

If the constructor executes as intended in the AppModule,
there is no ancestor injector that could provide an instance of CoreModule.
The injector should give up.

By default the injector throws an error when it can't find a requested provider.
The @Optional decorator means not finding the service is OK.
The injector returns null, the parentModule parameter is null,
and the constructor concludes uneventfully.

It's a different story if we improperly import CoreModule into a lazy loaded module such as HeroModule (try it).

Angular creates a lazy loaded module with its own injector, a child of the root injector.
@SkipSelf causes Angular to look for a CoreModule in the parent injector which this time is the root injector.
Of course it finds the instance imported by the root AppModule.
Now parentModule exists and the constructor throws the error.

Conclusion

You made it! You can examine and download the complete source for this final version from the live example.

Frequently Asked Questions

Now that you understand Angular Modules, you may be interested
in the companion Angular Module FAQs cookbook
with its ready answers to specific design and implementation questions.

Animations
Motion is an important aspect in the design of modern web applications. We want our
user interfaces to have smooth transitions between states, and engaging animations
that call attention where it's needed. Well-designed animations can make a UI not only
more fun but also easier to use.

Angular's animation system gives us what we need to make the kinds of animations we want.
We can build animations that run with the same kind of native performance that we're used
to with pure CSS animations. But we can also have our animation logic tightly integrated
with the rest of our application code, where they can be easily triggered and controlled.

	Quickstart Example: Transitioning Between Two States

	States and Transitions

	Example: Entering and Leaving

	Example: Entering and Leaving from Different States

	Animatable Properties and Units

	Automatic Property Calculation

	Animation Timing

	Multi-Step Animations with Keyframes

	Parallel Animation Groups

The examples referenced in this chapter are available as a .

Quickstart Example: Transitioning Between Two States

[image: A simple transition animation]Let's build a simple animation that transitions an element between two states
driven by a model attribute.

Animations are defined inside @Component metadata. Before we can add some, we need
to import a few animation-specific functions:

import {
 Component,
 Input,
 trigger,
 state,
 style,
 transition,
 animate
} from '@angular/core';
With these we can now define an animation trigger called heroState in the component
metadata. It has animated transitions between two states: active and inactive. When a
hero is active, we display the element in a slightly larger size and lighter color.

 animations: [
 trigger('heroState', [
 state('inactive', style({
 backgroundColor: '#eee',
 transform: 'scale(1)'
 })),
 state('active', style({
 backgroundColor: '#cfd8dc',
 transform: 'scale(1.1)'
 })),
 transition('inactive => active', animate('100ms ease-in')),
 transition('active => inactive', animate('100ms ease-out'))
])
]
In this example we are defining animation styles (color and transform) inline in the
animation metadata. In an upcoming release of Angular, support will be added for pulling
the styles in from the component CSS stylesheet instead.

We now have an animation defined but it is not yet used anywhere. We can change that by
attaching it to one or more elements in the component's template using the "[@triggerName]"
syntax:

template: `

 <li *ngFor="let hero of heroes"
 [@heroState]="hero.state"
 (click)="hero.toggleState()">
 {{hero.name}}

`,
Here we've applied the animation trigger to every element repeated by an ngFor. Each of
the repeated elements will animate independently. We're binding the value of the
attribute to the expression hero.state. We expect it to always be either inactive
or active, since that's what we have defined animation states for.

With this setup, an animated transition is shown whenever a hero object changes state!
Here's the full component implementation:

import {
 Component,
 Input,
 trigger,
 state,
 style,
 transition,
 animate
} from '@angular/core';

import { Heroes } from './hero.service';

@Component({
 moduleId: module.id,
 selector: 'hero-list-basic',
 template: `

 <li *ngFor="let hero of heroes"
 [@heroState]="hero.state"
 (click)="hero.toggleState()">
 {{hero.name}}

 `,
 styleUrls: ['hero-list.component.css'],
 animations: [
 trigger('heroState', [
 state('inactive', style({
 backgroundColor: '#eee',
 transform: 'scale(1)'
 })),
 state('active', style({
 backgroundColor: '#cfd8dc',
 transform: 'scale(1.1)'
 })),
 transition('inactive => active', animate('100ms ease-in')),
 transition('active => inactive', animate('100ms ease-out'))
])
]
})
export class HeroListBasicComponent {
 @Input() heroes: Heroes;
}
States and Transitions

Angular animations are defined in terms of logical states and transitions
between states.

An animation state is a string value that we define in our application code. In the example
above we used the states 'active' and 'inactive' based on the logical state of
hero objects. The source of the state can be a simple object attribute as it was in this case,
or it can be a value computed in a method. The important thing is that we can read it into the
component's template.

We can define styles for each animation state:

state('inactive', style({
 backgroundColor: '#eee',
 transform: 'scale(1)'
})),
state('active', style({
 backgroundColor: '#cfd8dc',
 transform: 'scale(1.1)'
})),
These state definitions specify the end styles of each state.
They are applied to the element once it has transitioned to that state, and will stay
as long as it remains in that state. In that sense, we are defining more than just
animations here. We're actually defining what styles the element has in different states.

Once we have states, we can define transitions between the states. Each transition
controls the timing of switching between one set of styles and the next:

transition('inactive => active', animate('100ms ease-in')),
transition('active => inactive', animate('100ms ease-out'))
[image: In Angular animations we defines states and transitions between states]If we have the same timing configuration for several transitions, we can combine
them into the same transition definition:

transition('inactive => active, active => inactive',
 animate('100ms ease-out'))
When we have the same timing for both directions of a transition, as we do in the previous
example, we can use the <=> shorthand syntax:

transition('inactive <=> active', animate('100ms ease-out'))
Sometimes we have styles that we want to apply during an animation but not keep around
after it finishes. We can define such styles inline in the transition. In this example,
the element receives one set of styles immediately and is then animated to the next.
When the transition finishes, none of these styles will be kept because they're not
defined in a state.

transition('inactive => active', [
 style({
 backgroundColor: '#cfd8dc',
 transform: 'scale(1.3)'
 }),
 animate('80ms ease-in', style({
 backgroundColor: '#eee',
 transform: 'scale(1)'
 }))
]),
The wildcard state *

The * ("wildcard") state matches any animation state. This is useful for defining styles and
transitions that should apply regardless of which state the animation is in. For example:

	The active => * transition applies when the element's state changes from active to anything else.

	The * => * transition applies when any change between two states takes place.

[image: The wildcard state can be used to match many different transitions at once]The void state

There's one special state called void that may apply to any animation. It applies
when the element is not attached to a view. This may be because it has not yet been
added or because it has been removed. The void state is useful for defining "enter" and
"leave" animations.

For example the * => void transition applies when the element leaves the view,
regardless of what state it was in before it left.

[image: The void state can be used for enter and leave transitions]The wildcard state * also matches void.

Example: Entering and Leaving

[image: Enter and leave animations]Using the void and * states we can define transitions that animate the
entering and leaving of elements:

	Enter: void => *

	Leave: * => void

animations: [
 trigger('flyInOut', [
 state('in', style({transform: 'translateX(0)'})),
 transition('void => *', [
 style({transform: 'translateX(-100%)'}),
 animate(100)
]),
 transition('* => void', [
 animate(100, style({transform: 'translateX(100%)'}))
])
])
]
Note that in this case we have the styles applied to the void state directly in the
transition definitions, and not in a separate state(void) definition. We do this because
we want the transforms to be different on enter and leave: The element enters from the left
and leaves to the right.

Example: Entering and Leaving from Different States

[image: Enter and leave animations combined with state animations]We can also combine this animation with the earlier state transition animation by
using the hero state as the animation state. What this will let us do is configure
different transitions for entering and leaving based on what the state of the hero
is:

	Inactive hero enter: void => inactive

	Active hero enter: void => active

	Inactive hero leave: inactive => void

	Active hero leave: active => void

We now have fine-grained control over each transition:

[image: This example transitions between active, inactive, and void states]animations: [
 trigger('heroState', [
 state('inactive', style({transform: 'translateX(0) scale(1)'})),
 state('active', style({transform: 'translateX(0) scale(1.1)'})),
 transition('inactive => active', animate('100ms ease-in')),
 transition('active => inactive', animate('100ms ease-out')),
 transition('void => inactive', [
 style({transform: 'translateX(-100%) scale(1)'}),
 animate(100)
]),
 transition('inactive => void', [
 animate(100, style({transform: 'translateX(100%) scale(1)'}))
]),
 transition('void => active', [
 style({transform: 'translateX(0) scale(0)'}),
 animate(200)
]),
 transition('active => void', [
 animate(200, style({transform: 'translateX(0) scale(0)'}))
])
])
]
Animatable Properties and Units

Since Angular's animation support builds on top of Web Animations, we can animate any property
that the browser considers animatable. This includes positions, sizes, transforms, colors,
borders and many others. The W3C maintains
a list of animatable properties.

For positional properties that have a numeric value, we can define a unit by providing
the value as a string with the appropriate suffix:

For most dimensional properties we can also just define a number which is then assumed to be
in pixels:

	50 is the same as saying '50px'

Automatic Property Calculation

[image: Animation with automated height calculation]Sometimes the value of a dimensional style property that we want to
animate is not known until at runtime. For example, it is quite common for elements
to have widths and heights that depend on their content and the screen size. These
properties are often tricky to animate with CSS.

With Angular we can use a special * property value in these cases. What it means
is that the value of this property will be computed at runtime and then plugged into
the animation.

The "leave" animation in this example takes whatever height the element has before it
leaves and animates from that height to zero:

animations: [
 trigger('shrinkOut', [
 state('in', style({height: '*'})),
 transition('* => void', [
 style({height: '*'}),
 animate(250, style({height: 0}))
])
])
]
Animation Timing

There are three timing properties we can tune for every animated transition:
The duration, the delay, and the easing function. They are all combined into
a single transition timing string.

Duration

The duration controls how long the animation takes to run from start to finish.
We can define a duration in three ways:

	As a plain number, in milliseconds: 100

	In a string, as milliseconds: '100ms'

	In a string, as seconds: '0.1s'

Delay

The delay controls how long to wait after an animation triggers before the
transition actually begins. We can define one by adding it in the same string
following the duration. It also has the same format options as the duration:

	Wait for 100ms and then run for 200ms: '0.2s 100ms'

Easing

The easing function controls how the animation accelerates
and decelerates during its runtime. For example, using an ease-in function means
the animation begins relatively slowly but then picks up speed as it progresses. We
can control the easing by adding it as a third value in the string after the duration
and the delay (or as the second value when there is no delay):

	Wait for 100ms and then run for 200ms, with easing: '0.2s 100ms ease-out'

	Run for 200ms, with easing: '0.2s ease-in-out'

[image: Animations with specific timings]Example

Here are a couple of custom timings in action. Both "enter" and "leave" last for
200 milliseconds but they have different easings. The leave begins after a
slight delay:

animations: [
 trigger('flyInOut', [
 state('in', style({opacity: 1, transform: 'translateX(0)'})),
 transition('void => *', [
 style({
 opacity: 0,
 transform: 'translateX(-100%)'
 }),
 animate('0.2s ease-in')
]),
 transition('* => void', [
 animate('0.2s 10 ease-out', style({
 opacity: 0,
 transform: 'translateX(100%)'
 }))
])
])
]
Multi-Step Animations with Keyframes

[image: Animations with some bounce implemented with keyframes]With animation keyframes we can go beyond a simple transition between two
sets of styles to a more intricate animation that goes through one or more
intermediate styles in between.

For each keyframe, we can specify an offset that defines at which point
in the animation that keyframe applies. The offset is a number between zero,
which marks the beginning of the animation, and one, which marks the end.

In this example we add some "bounce" to our enter and leave animations with
keyframes:

animations: [
 trigger('flyInOut', [
 state('in', style({transform: 'translateX(0)'})),
 transition('void => *', [
 animate(300, keyframes([
 style({opacity: 0, transform: 'translateX(-100%)', offset: 0}),
 style({opacity: 1, transform: 'translateX(15px)', offset: 0.3}),
 style({opacity: 1, transform: 'translateX(0)', offset: 1.0})
]))
]),
 transition('* => void', [
 animate(300, keyframes([
 style({opacity: 1, transform: 'translateX(0)', offset: 0}),
 style({opacity: 1, transform: 'translateX(-15px)', offset: 0.7}),
 style({opacity: 0, transform: 'translateX(100%)', offset: 1.0})
]))
])
])
]
Note that the offsets are not defined in terms of absolute time. They are relative
measures from 0 to 1. The final timeline of the animation will based on the combination
of keyframe offsets, duration, delay, and easing.

Defining offsets for keyframes is optional. If we omit them, offsets with even
spacing are automatically assigned. For example, three keyframes without predefined
offsets will receive offsets 0, 0.5, and 1.

Parallel Animation Groups

[image: Parallel animations with different timings, implemented with groups]We've already seen how we can animate multiple style properties at the same time:
Just put all of them into the same style() definition!

But we may also want to configure different timings for animations that happen
in parallel. For example, we may want to animate two CSS properties but use a
different easing function for each one.

For this we can use animation groups. In this example we use groups both on
enter and leave so that we can use two different timing configurations. Both
are applied to the same element in parallel, but run independent of each other:

animations: [
 trigger('flyInOut', [
 state('in', style({width: 120, transform: 'translateX(0)', opacity: 1})),
 transition('void => *', [
 style({width: 10, transform: 'translateX(50px)', opacity: 0}),
 group([
 animate('0.3s 0.1s ease', style({
 transform: 'translateX(0)',
 width: 120
 })),
 animate('0.3s ease', style({
 opacity: 1
 }))
])
]),
 transition('* => void', [
 group([
 animate('0.3s ease', style({
 transform: 'translateX(50px)',
 width: 10
 })),
 animate('0.3s 0.2s ease', style({
 opacity: 0
 }))
])
])
])
]
One group animates the element transform and width. The other animates the opacity.

Attribute Directives
An Attribute directive changes the appearance or behavior of a DOM element.

In this chapter we will

	write an attribute directive to change the background color

	apply the attribute directive to an element in a template

	respond to user-initiated events

	pass values into the directive using data binding

Try the .

Directives overview

There are three kinds of directives in Angular:

	Components

	Structural directives

	Attribute directives

A Component is really a directive with a template.
It's the most common of the three directives and we tend to write lots of them as we build applications.

Structural directives can change the DOM layout by adding and removing DOM elements.
NgFor and NgIf are two familiar examples.

An Attribute directive can change the appearance or behavior of an element.
The built-in NgStyle directive, for example,
can change several element styles at the same time.

We are going to write our own attribute directive to set an element's background color
when the user hovers over that element.

We don't need any directive to simply set the background color.
We can set it with the special Style Binding like this:

<p [style.background]="'lime'">I am green with envy!</p>
That wouldn't be nearly as much fun as creating our own directive.

Besides, we're not just setting the color; we'll be changing the color
in response to a user action, a mouse hover.

Build a simple attribute directive

An attribute directive minimally requires building a controller class annotated with
@Directive, which specifies the selector identifying
the attribute associated with the directive.
The controller class implements the desired directive behavior.

Let's build a small illustrative example together.

Our first draft

Create a new project folder (attribute-directives) and follow the steps in the QuickStart.

Create the following source file in the indicated folder with the given code:

app/highlight.directive.ts
import { Directive, ElementRef, Input, Renderer } from '@angular/core';

@Directive({ selector: '[myHighlight]' })
export class HighlightDirective {
 constructor(el: ElementRef, renderer: Renderer) {
 renderer.setElementStyle(el.nativeElement, 'backgroundColor', 'yellow');
 }
}
We begin by importing some symbols from the Angular core.
We need the Directive symbol for the @Directive decorator.
We need the ElementRef to inject into the directive's constructor
so we can access the DOM element.
We also need Renderer so we can change the DOM element's style.
We don't need Input immediately but we will need it later in the chapter.

Then we define the directive metadata in a configuration object passed
as an argument to the @Directive decorator function.

@Directive requires a CSS selector to identify
the HTML in the template that is associated with our directive.
The CSS selector for an attribute
is the attribute name in square brackets.
Our directive's selector is [myHighlight].
Angular will locate all elements in the template that have an attribute named myHighlight.

Why not call it "highlight"?

highlight is a nicer name than myHighlight and, technically, it would work if we called it that.

However, we recommend picking a selector name with a prefix to ensure
that it cannot conflict with any standard HTML attribute, now or in the future.
There is also less risk of colliding with a third-party directive name when we give ours a prefix.

We do not prefix our highlight directive name with ng.
That prefix belongs to Angular.

We need a prefix of our own, preferably short, and my will do for now.

After the @Directive metadata comes the directive's controller class, which contains the logic for the directive. We export `HighlightDirective` to make it accessible to other components.
Angular creates a new instance of the directive's controller class for
each matching element, injecting an Angular ElementRef and Renderer
into the constructor.
ElementRef is a service that grants us direct access to the DOM element
through its nativeElement property and with Renderer we can set the element style.

Apply the attribute directive

The AppComponent in this sample is a test harness for our HighlightDirective.
Let's give it a new template that
applies the directive as an attribute to a paragraph (p) element.
In Angular terms, the <p> element will be the attribute host.

We'll put the template in its own app.component.htmlfile that looks like this:
app/app.component.html
<h1>My First Attribute Directive</h1>
<p myHighlight>Highlight me!</p>
A separate template file is clearly overkill for a 2-line template.
Hang in there; we're going to expand it later.
Meanwhile, we'll revise the AppComponent to reference this template.

app/app.component.ts
import { Component } from '@angular/core';

@Component({
 selector: 'my-app',
 templateUrl: 'app/app.component.html'
})

export class AppComponent { }
We'll add an import statement to fetch the 'Highlight' directive and,
added that class to the declarations NgModule metadata so that Angular
will recognize our directive when it encounters myHighlight in the template.

app/app.module.ts
import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';
import { HighlightDirective } from './highlight.directive';

@NgModule({
 imports: [BrowserModule],
 declarations: [
 AppComponent,
 HighlightDirective
],
 bootstrap: [AppComponent]
})
export class AppModule { }
We run the app and see that our directive highlights the paragraph text.

[image: First Highlight]Your directive isn't working?

Did you remember to add the directive to the the declarations attribute of @NgModule? It is easy to forget!

Open the console in the browser tools and look for an error like this:

EXCEPTION: Template parse errors:
 Can't bind to 'myHighlight' since it isn't a known property of 'p'.Angular detects that we're trying to bind to something but it doesn't know what.
We have to tell it by listing HighlightDirective in the declarations metadata array.

Let's recap what happened.

Angular found the myHighlight attribute on the <p> element. It created
an instance of the HighlightDirective class,
injecting a reference to the element into the constructor
where we set the <p> element's background style to yellow.

Respond to user action

We are not satisfied to simply set an element color.
Our directive should set the color in response to a user action.
Specifically, we want to set the color when the user hovers over an element.

We'll need to

	detect when the user hovers into and out of the element,

	respond to those actions by setting and clearing the highlight color, respectively.

We apply the @HostListener decorator to methods which are called when an event is raised.

@HostListener('mouseenter') onMouseEnter() {
/* . . . */
}

@HostListener('mouseleave') onMouseLeave() {
/* . . . */
}
The @HostListener decorator refers to the DOM element that hosts our attribute directive, the <p> in our case.

We could have attached event listeners by manipulating the host DOM element directly, but
there are at least three problems with such an approach:

	We have to write the listeners correctly.

	We must detach our listener when the directive is destroyed to avoid memory leaks.

	We'd be talking to DOM API directly which, we learned, is something to avoid.

Let's roll with the @HostListener decorator.

Now we implement the two mouse event handlers:

 @HostListener('mouseenter') onMouseEnter() {
 this.highlight('yellow');
 }

 @HostListener('mouseleave') onMouseLeave() {
 this.highlight(null);
 }

 private highlight(color: string) {
 this.renderer.setElementStyle(this.el.nativeElement, 'backgroundColor', color);
 }
Notice that they delegate to a helper method that sets the color via a private local variable, el.
We revise the constructor to capture the ElementRef.nativeElement in this variable.

constructor(private el: ElementRef, private renderer: Renderer) { }
Here's the updated directive:

app/highlight.directive.ts
import { Directive, ElementRef, HostListener, Input, Renderer } from '@angular/core';

@Directive({
 selector: '[myHighlight]'
})

export class HighlightDirective {
 constructor(private el: ElementRef, private renderer: Renderer) { }

 @HostListener('mouseenter') onMouseEnter() {
 this.highlight('yellow');
 }

 @HostListener('mouseleave') onMouseLeave() {
 this.highlight(null);
 }

 private highlight(color: string) {
 this.renderer.setElementStyle(this.el.nativeElement, 'backgroundColor', color);
 }

}
We run the app and confirm that the background color appears as we move the mouse over the p and
disappears as we move out.

[image: Second Highlight]Configure the directive with binding

Currently the highlight color is hard-coded within the directive. That's inflexible.
We should set the color externally with a binding like this:

<p [myHighlight]="color">Highlight me!</p>
We'll extend our directive class with a bindable input highlightColor property and use it when we highlight text.

Here is the final version of the class:

app/highlight.directive.ts (class)
export class HighlightDirective {
 private _defaultColor = 'red';

 constructor(private el: ElementRef, private renderer: Renderer) { }

 @Input('myHighlight') highlightColor: string;

 @HostListener('mouseenter') onMouseEnter() {
 this.highlight(this.highlightColor || this._defaultColor);
 }
 @HostListener('mouseleave') onMouseLeave() {
 this.highlight(null);
 }

 private highlight(color: string) {
 this.renderer.setElementStyle(this.el.nativeElement, 'backgroundColor', color);
 }
}
The new highlightColor property is called an input property because data flows from the binding expression into our directive.
Notice the @Input() decorator applied to the property.

app/highlight.directive.ts (color)
@Input('myHighlight') highlightColor: string;
@Input adds metadata to the class that makes the highlightColor property available for
property binding under the myHighlight alias.
We must add this input metadata or Angular will reject the binding.
See the appendix below to learn why.

@Input(alias)

The developer who uses this directive expects to bind to the attribute name, myHighlight.
The directive property name is highlightColor. That's a disconnect.

We could resolve the discrepancy by renaming the property to myHighlight and define it as follows:

@Input() myHighlight: string;
Maybe we don't want that property name inside the directive perhaps because it
doesn't express our intention well.
We can alias the highlightColor property with the attribute name by
passing myHighlight into the @Input decorator:

@Input('myHighlight') highlightColor: string;

Now that we're getting the highlight color as an input, we modify the onMouseEnter() method to use
it instead of the hard-coded color name.
We also define red as the default color to fallback on in case
the user neglects to bind with a color.

@HostListener('mouseenter') onMouseEnter() {
 this.highlight(this.highlightColor || this._defaultColor);
}
Now we'll update our AppComponent template to let
users pick the highlight color and bind their choice to our directive.

Here is the updated template:

<h1>My First Attribute Directive</h1>
<h4>Pick a highlight color</h4>
<div>
 <input type="radio" name="colors" (click)="color='lightgreen'">Green
 <input type="radio" name="colors" (click)="color='yellow'">Yellow
 <input type="radio" name="colors" (click)="color='cyan'">Cyan
</div>
<p [myHighlight]="color">Highlight me!</p>
Where is the templated color property?

The eagle-eyed may notice that the radio button click handlers in the template set a color property
and we are binding that color to the directive.
We should expect to find a color on the host AppComponent.

We never defined a color property for the host AppComponent!
And yet this code works. Where is the template color value going?

Browser debugging reveals that Angular dynamically added a color property
to the runtime instance of the AppComponent.

This is convenient behavior but it is also implicit behavior that could be confusing.
While it's cool that this technique works, we recommend adding the color property to the AppComponent.

Here is our second version of the directive in action.

[image: Highlight v.2]Bind to a second property

Our directive only has a single, customizable property. What if we had two properties?

Let's allow the template developer to set the default color, the color that prevails until the user picks a highlight color.
We'll add a second input property to HighlightDirective called defaultColor:

@Input() set defaultColor(colorName: string){
 this._defaultColor = colorName || this._defaultColor;
}
The defaultColor property has a setter that overrides the hard-coded default color, "red".
We don't need a getter.

How do we bind to it? We already "burned" the myHighlight attribute name as a binding target.

Remember that a component is a directive too.
We can add as many component property bindings as we need by stringing them along in the template
as in this example that sets the a, b, c properties to the string literals 'a', 'b', and 'c'.

<my-component [a]="'a'" [b]="'b'" [c]="'c'"><my-component>We do the same thing with an attribute directive.

<p [myHighlight]="color" [defaultColor]="'violet'">
 Highlight me too!
</p>
Here we're binding the user's color choice to the myHighlight attribute as we did before.
We're also binding the literal string, 'violet', to the defaultColor.

Here is the final version of the directive in action.

[image: Final Highlight]Summary

We now know how to

	build a simple attribute directive to attach behavior to an HTML element,

	use that directive in a template,

	respond to events to change behavior based on an event,

	and use binding to pass values to the attribute directive.

The final source:

import { Component } from '@angular/core';

@Component({
 selector: 'my-app',
 templateUrl: 'app/app.component.html'
})

export class AppComponent { }
<h1>My First Attribute Directive</h1>
<h4>Pick a highlight color</h4>
<div>
 <input type="radio" name="colors" (click)="color='lightgreen'">Green
 <input type="radio" name="colors" (click)="color='yellow'">Yellow
 <input type="radio" name="colors" (click)="color='cyan'">Cyan
</div>
<p [myHighlight]="color">Highlight me!</p>

<p [myHighlight]="color" [defaultColor]="'violet'">
 Highlight me too!
</p>
import { Directive, ElementRef, HostListener, Input, Renderer } from '@angular/core';

@Directive({
 selector: '[myHighlight]'
})
export class HighlightDirective {
 private _defaultColor = 'red';

 constructor(private el: ElementRef, private renderer: Renderer) { }

 @Input() set defaultColor(colorName: string){
 this._defaultColor = colorName || this._defaultColor;
 }

 @Input('myHighlight') highlightColor: string;

 @HostListener('mouseenter') onMouseEnter() {
 this.highlight(this.highlightColor || this._defaultColor);
 }
 @HostListener('mouseleave') onMouseLeave() {
 this.highlight(null);
 }

 private highlight(color: string) {
 this.renderer.setElementStyle(this.el.nativeElement, 'backgroundColor', color);
 }
}
import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';
import { HighlightDirective } from './highlight.directive';

@NgModule({
 imports: [BrowserModule],
 declarations: [
 AppComponent,
 HighlightDirective
],
 bootstrap: [AppComponent]
})
export class AppModule { }
import { platformBrowserDynamic } from '@angular/platform-browser-dynamic';
import { AppModule } from './app.module';

platformBrowserDynamic().bootstrapModule(AppModule);
<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>Attribute Directives</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="styles.css">

 <!-- Polyfill(s) for older browsers -->
 <script src="node_modules/core-js/client/shim.min.js"></script>

 <script src="node_modules/zone.js/dist/zone.js"></script>
 <script src="node_modules/reflect-metadata/Reflect.js"></script>
 <script src="node_modules/systemjs/dist/system.src.js"></script>

 <script src="systemjs.config.js"></script>
 <script>
 System.import('app').catch(function(err){ console.error(err); });
 </script>
 </head>
 <body>
 <my-app>loading...</my-app>
 </body>
</html>
Appendix: Input properties

Earlier we declared the highlightColor property to be an input property of our
HighlightDirective

We've seen properties in bindings before.
We never had to declare them as anything. Why now?

Angular makes a subtle but important distinction between binding sources and targets.

In all previous bindings, the directive or component property was a binding source.
A property is a source if it appears in the template expression to the right of the equals (=).

A property is a target when it appears in square brackets ([]) to the left of the equals (=) ...
as it is does when we bind to the myHighlight property of the HighlightDirective,

<p [myHighlight]="color">Highlight me!</p>
The 'color' in [myHighlight]="color" is a binding source.
A source property doesn't require a declaration.

The 'myHighlight' in [myHighlight]="color" is a binding target.
We must declare it as an input property.
Angular rejects the binding with a clear error if we don't.

Angular treats a target property differently for a good reason.
A component or directive in target position needs protection.

Imagine that our HighlightDirective did truly wonderous things.
We graciously made a gift of it to the world.

To our surprise, some people — perhaps naively —
started binding to every property of our directive.
Not just the one or two properties we expected them to target. Every property.
That could really mess up our directive in ways we didn't anticipate and have no desire to support.

The input declaration ensures that consumers of our directive can only bind to
the properties of our public API ... nothing else.

Component Styles
Angular 2 applications are styled with regular CSS. That means we can apply
everything we know about CSS stylesheets, selectors, rules, and media queries
to our Angular applications directly.

On top of this, Angular has the ability to bundle component styles
with our components enabling a more modular design than regular stylesheets.

In this chapter we learn how to load and apply these component styles.

	Using Component Styles

	Special selectors

	Loading Styles into Components

	Controlling View Encapsulation: Emulated, Native, and None

	Appendix 1: Inspecting the generated runtime component styles

	Appendix 2: Loading Styles with Relative URLs

Run the of the code shown in this chapter.

Using Component Styles

For every Angular 2 component we write, we may define not only an HTML template,
but also the CSS styles that go with that template,
specifying any selectors, rules, and media queries that we need.

One way to do this is to set the styles property in the component metadata.
The styles property takes an array of strings that contain CSS code.
Usually we give it one string as in this example:

@Component({
 selector: 'hero-app',
 template: `
 <h1>Tour of Heroes</h1>
 <hero-app-main [hero]=hero></hero-app-main>`,
 styles: ['h1 { font-weight: normal; }']
})
export class HeroAppComponent {
/* . . . */
}
Component styles differ from traditional, global styles in a couple of ways.

Firstly, the selectors we put into a component's styles only apply within the template
of that component. The h1 selector in the example above only applies to the <h1> tag
in the template of HeroAppComponent. Any <h1> elements elsewhere in
the application are unaffected.

This is a big improvement in modularity compared to how CSS traditionally works:

	We can use the CSS class names and selectors that make the most sense in the context of each component.

	Class names and selectors are local to the component and won't collide with
classes and selectors used elsewhere in the application.

	Our component's styles cannot be changed by changes to styles elsewhere in the application.

	We can co-locate the CSS code of each component with the TypeScript and HTML code of the component,
which leads to a neat and tidy project structure.

	We can change or remove component CSS code in the future without trawling through the
whole application to see where else it may have been used. We just look at the component we're in.

Special selectors

Component styles have a few special selectors from the world of
shadow DOM style scoping:

:host

Use the :host pseudo-class selector to target styles in the element that hosts the component (as opposed to
targeting elements inside the component's template):

:host {
 display: block;
 border: 1px solid black;
}
This is the only way we can target the host element. We cannot reach
it from inside the component with other selectors, because it is not part of the
component's own template. It is in a parent component's template.

Use the function form to apply host styles conditionally by
including another selector inside parentheses after :host.

In the next example we target the host element again, but only when it also has the active CSS class.

:host(.active) {
 border-width: 3px;
}
:host-context

Sometimes it is useful to apply styles based on some condition outside a component's view.
For example, there may be a CSS theme class applied to the document <body> element, and
we want to change how our component looks based on that.

Use the :host-context() pseudo-class selector. It works just like the function
form of :host(). It looks for a CSS class in any ancestor of the component host element, all the way
up to the document root. It's useful when combined with another selector.

In the following example, we apply a background-color style to all <h2> elements inside the component, only
if some ancestor element has the CSS class theme-light.

:host-context(.theme-light) h2 {
 background-color: #eef;
}
/deep/

Component styles normally apply only to the HTML in the component's own template.

We can use the /deep/ selector to force a style down through the child component tree into all the child component views.
The /deep/ selector works to any depth of nested components, and it applies both to the view
children and the content children of the component.

In this example, we target all <h3> elements, from the host element down
through this component to all of its child elements in the DOM:

:host /deep/ h3 {
 font-style: italic;
}
The /deep/ selector also has the alias >>>. We can use either of the two interchangeably.

The /deep/ and >>> selectors should only be used with emulated view encapsulation.
This is the default and it is what we use most of the time. See the
Controlling View Encapsulation
section for more details.

Loading Styles into Components

We have several ways to add styles to a component:

	inline in the template HTML

	by setting styles or styleUrls metadata

	with CSS imports

The scoping rules outlined above apply to each of these loading patterns.

We can add a styles array property to the @Component decorator.
Each string in the array (usually just one string) defines the CSS.

@Component({
 selector: 'hero-app',
 template: `
 <h1>Tour of Heroes</h1>
 <hero-app-main [hero]=hero></hero-app-main>`,
 styles: ['h1 { font-weight: normal; }']
})
export class HeroAppComponent {
/* . . . */
}
Template Inline Styles

We can embed styles directly into the HTML template by putting them
inside <style> tags.

@Component({
 selector: 'hero-controls',
 template: `
 <style>
 button {
 background-color: white;
 border: 1px solid #777;
 }
 </style>
 <h3>Controls</h3>
 <button (click)="activate()">Activate</button>
 `
})

We can load styles from external CSS files by adding a styleUrls attribute
into a component's @Component decorator:

@Component({
 selector: 'hero-details',
 template: `
 <h2>{{hero.name}}</h2>
 <hero-team [hero]=hero></hero-team>
 <ng-content></ng-content>
 `,
 styleUrls: ['app/hero-details.component.css']
})
export class HeroDetailsComponent {
/* . . . */
}
The URL is relative to the application root which is usually the
location of the index.html web page that hosts the application.
The style file URL is not relative to the component file.
That's why the example URL begins app/.
See Appendix 2 to specify a URL relative to the
component file.

Users of module bundlers like Webpack may also use the styles attribute
to load styles from external files at build time. They could write:

styles: [require('my.component.css')]

We set the styles property, not styleUrls property! The module
bundler is loading the CSS strings, not Angular.
Angular only sees the CSS strings after the bundler loads them.
To Angular it is as if we wrote the styles array by hand.
Refer to the module bundler's documentation for information on
loading CSS in this manner.

We can also embed <link> tags into the component's HTML template.

As with styleUrls, the link tag's href URL is relative to the
application root, not relative to the component file.

@Component({
 selector: 'hero-team',
 template: `
 <link rel="stylesheet" href="app/hero-team.component.css">
 <h3>Team</h3>

 <li *ngFor="let member of hero.team">
 {{member}}

 `
})
CSS @imports

We can also import CSS files into our CSS files by using the standard CSS
@import rule.

In this case the URL is relative to the CSS file into which we are importing.

app/hero-details.component.css (excerpt)
@import 'hero-details-box.css';
Controlling View Encapsulation: Native, Emulated, and None

As discussed above, component CSS styles are encapsulated into the component's own view and do
not affect the rest of the application.

We can control how this encapsulation happens on a per
component basis by setting the view encapsulation mode in the component metadata. There
are three modes to choose from:

	Native view encapsulation uses the browser's native Shadow DOM
implementation to attach a Shadow DOM to the component's host element, and then puts the component
view inside that Shadow DOM. The component's styles are included within the Shadow DOM.

	Emulated view encapsulation (the default) emulates the behavior of Shadow DOM by preprocessing
(and renaming) the CSS code to effectively scope the CSS to the component's view.
See Appendix 1 for details.

	None means that Angular does no view encapsulation.
Angular adds the CSS to the global styles.
The scoping rules, isolations, and protections discussed earlier do not apply.
This is essentially the same as pasting the component's styles into the HTML.

Set the components encapsulation mode using the encapsulation property in the component metadata:

// warning: few browsers support shadow DOM encapsulation at this time
encapsulation: ViewEncapsulation.Native
Native view encapsulation only works on browsers that have native support
for Shadow DOM. The support is still limited,
which is why Emulated view encapsulation is the default mode and recommended
in most cases.

Appendix 1: Inspecting The CSS Generated in Emulated View Encapsulation

When using the default emulated view encapsulation, Angular preprocesses
all component styles so that they approximate the standard Shadow CSS scoping rules.

When we inspect the DOM of a running Angular application with emulated view
encapsulation enabled, we see that each DOM element has some extra attributes
attached to it:

<hero-details _nghost-pmm-5>
 <h2 _ngcontent-pmm-5>Mister Fantastic</h2>
 <hero-team _ngcontent-pmm-5 _nghost-pmm-6>
 <h3 _ngcontent-pmm-6>Team</h3>
 </hero-team>
</hero-detail>
We see two kinds of generated attributes:

	An element that would be a Shadow DOM host in native encapsulation has a
generated _nghost attribute. This is typically the case for component host elements.

	An element within a component's view has a _ngcontent attribute
that identifies to which host's emulated Shadow DOM this element belongs.

The exact values of these attributes are not important. They are automatically
generated and we never refer to them in application code. But they are targeted
by the generated component styles, which we'll find in the <head> section of the DOM:

[_nghost-pmm-5] {
 display: block;
 border: 1px solid black;
}

h3[_ngcontent-pmm-6] {
 background-color: white;
 border: 1px solid #777;
}
These are the styles we wrote, post-processed so that each selector is augmented
with _nghost or _ngcontent attribute selectors.
These extra selectors enable the scoping rules described in this guide.

We'll likely live with emulated mode until shadow DOM gains traction.

Appendix 2: Loading Styles with Relative URLs

It's common practice to split a component's code, HTML, and CSS into three separate files in the same directory:

quest-summary.component.ts
quest-summary.component.html
quest-summary.component.css
We include the template and CSS files by setting the templateUrl and styleUrls metadata properties respectively.
Because these files are co-located with the component,
it would be nice to refer to them by name without also having to specify a path back to the root of the application.

We can change the way Angular calculates the full URL be setting the component metadata's moduleId property to module.id.

app/quest-summary.component.ts
@Component({
 moduleId: module.id,
 selector: 'quest-summary',
 templateUrl: 'quest-summary.component.html',
 styleUrls: ['quest-summary.component.css']
})
export class QuestSummaryComponent { }
Learn more about moduleId in the Component-Relative Paths chapter.

Hierarchical Injectors
We learned the basics of Angular Dependency injection in the
Dependency Injection chapter.

Angular has a Hierarchical Dependency Injection system.
There is actually a tree of injectors
that parallel an application's component tree.
We can reconfigure the injectors at any level of that component tree with
interesting and useful results.

In this chapter we explore these points and write some code.

Try the .

The Injector Tree

In the Dependency Injection chapter
we learned how to configure a dependency injector and how to retrieve dependencies where we need them.

We oversimplified. In fact, there is no such thing as the injector!
An application may have multiple injectors!

An Angular application is a tree of components. Each component instance has its own injector!
The tree of components parallels the tree of injectors.

Angular doesn't literally create a separate injector for each component.
Every component doesn't need its own injector and it would be horribly inefficient to create
masses of injectors for no good purpose.

But it is true that every component has an injector (even if it shares that injector with another component)
and there may be many different injector instances operating at different levels of the component tree.

It is useful to pretend that every component has its own injector.

Consider a simple variation on the Tour of Heroes application consisting of three different components:
HeroesApp, HeroesListComponent and HeroesCardComponent.
The HeroesApp holds a single instance of HeroesListComponent.
The new twist is that the HeroesListComponent may hold and manage multiple instances of the HeroesCardComponent.

The following diagram represents the state of the component tree when there are three instances of HeroesCardComponent
open simultaneously.

[image: injector tree]Each component instance gets its own injector and an injector at one level is a child injector of the injector above it in the tree.

When a component at the bottom requests a dependency, Angular tries to satisfy that dependency with a provider registered in that component's own injector.
If the component's injector lacks the provider, it passes the request up to its parent component's injector.
If that injector can't satisfy the request, it passes it along to its parent component's injector.
The requests keep bubbling up until we find an injector that can handle the request or run out of component ancestors.
If we run out of ancestors, Angular throws an error.

There's a third possibility. An intermediate component can declare that it is the "host" component.
The hunt for providers will climb no higher than the injector for this host component.
 We'll reserve discussion of this option for another day.

Such a proliferation of injectors makes little sense until we consider the possibility that injectors at different levels can be
configured with different providers. We don't have to reconfigure providers at every level. But we can.

If we don't reconfigure, the tree of injectors appears to be flat. All requests bubble up to the root
NgModule injector that we configured with the bootstrapModule method.

The ability to configure one or more providers at different levels opens up interesting and useful possibilities.

Let’s return to our Car example.
Suppose we configured the root injector (marked as A) with providers for Car, Engine and Tires.
We create a child component (B) that defines its own providers for Car and Engine
This child is the parent of another component (C) that defines its own provider for Car.

Behind the scenes each component sets up its own injector with one or more providers defined for that component itself.

When we resolve an instance of Car at the deepest component (C),
its injector produces an instance of Car resolved by injector (C) with an Engine resolved by injector (B) and
Tires resolved by the root injector (A).

[image: injector tree]Component Injectors

In the previous section, we talked about injectors and how they are organized like a tree. Lookups follow the injector tree upwards until they find the requested thing to inject. But when do we actually want to provide providers on the root injector and when do we want to provide them on a child injector?

Consider you are building a component to show a list of super heroes that displays each super hero in a card with its name and superpower. There should also be an edit button that opens up an editor to change the name and superpower of our hero.

One important aspect of the editing functionality is that we want to allow multiple heroes to be in edit mode at the same time and that one can always either commit or cancel the proposed changes.

Let’s take a look at the HeroesListComponent which is the root component for this example.

app/heroes-list.component.ts
import { Component } from '@angular/core';

import { EditItem } from './edit-item';
import { HeroesService } from './heroes.service';
import { Hero } from './hero';

@Component({
 selector: 'heroes-list',
 template: `
 <div>

 <li *ngFor="let editItem of heroes">
 <hero-card
 [hidden]="editItem.editing"
 [hero]="editItem.item">
 </hero-card>
 <button
 [hidden]="editItem.editing"
 (click)="editItem.editing = true">
 edit
 </button>
 <hero-editor
 (saved)="onSaved(editItem, $event)"
 (canceled)="onCanceled(editItem)"
 [hidden]="!editItem.editing"
 [hero]="editItem.item">
 </hero-editor>

 </div>`
})
export class HeroesListComponent {
 heroes: Array<EditItem<Hero>>;
 constructor(heroesService: HeroesService) {
 this.heroes = heroesService.getHeroes()
 .map(item => new EditItem(item));
 }

 onSaved (editItem: EditItem<Hero>, updatedHero: Hero) {
 editItem.item = updatedHero;
 editItem.editing = false;
 }

 onCanceled (editItem: EditItem<Hero>) {
 editItem.editing = false;
 }
}
Notice that it imports the HeroService that we’ve used before so we can skip its declaration. The only difference is that we’ve used a more formal approach for our Heromodel and defined it upfront as such.

app/hero.ts
export class Hero {
 name: string;
 power: string;
}
Our HeroesListComponent defines a template that creates a list of HeroCardComponents and HeroEditorComponents, each bound to an instance of hero that is returned from the HeroService. Ok, that’s not entirely true. It actually binds to an EditItem<Hero> which is a simple generic datatype that can wrap any type and indicate if the item being wrapped is currently being edited or not.

app/edit-item.ts
export class EditItem<T> {
 editing: boolean;
 constructor (public item: T) {}
}
But how is HeroCardComponent implemented? Let’s take a look.

app/hero-card.component.ts
import { Component, Input } from '@angular/core';

import { Hero } from './hero';

@Component({
 selector: 'hero-card',
 template: `
 <div>
 Name:
 {{hero.name}}
 </div>`
})
export class HeroCardComponent {
 @Input() hero: Hero;
}
The HeroCardComponent is basically a component that defines a template to render a hero. Nothing more.

Let’s get to the interesting part and take a look at the HeroEditorComponent

app/hero-editor.component.ts
import { Component, EventEmitter, Input, Output } from '@angular/core';

import { RestoreService } from './restore.service';
import { Hero } from './hero';

@Component({
 selector: 'hero-editor',
 providers: [RestoreService],
 template: `
 <div>
 Name:
 <input [(ngModel)]="hero.name"/>
 <div>
 <button (click)="onSaved()">save</button>
 <button (click)="onCanceled()">cancel</button>
 </div>
 </div>`
})

export class HeroEditorComponent {
 @Output() canceled = new EventEmitter();
 @Output() saved = new EventEmitter();

 constructor(private restoreService: RestoreService<Hero>) {}

 @Input()
 set hero (hero: Hero) {
 this.restoreService.setItem(hero);
 }

 get hero () {
 return this.restoreService.getItem();
 }

 onSaved () {
 this.saved.next(this.restoreService.getItem());
 }

 onCanceled () {
 this.hero = this.restoreService.restoreItem();
 this.canceled.next(this.hero);
 }
}
Now here it’s getting interesting. The HeroEditorComponentdefines a template with an input to change the name of the hero and a cancel and a save button. Remember that we said we want to have the flexibility to cancel our editing and restore the old value? This means we need to maintain two copies of our Hero that we want to edit. Thinking ahead, this is a perfect use case to abstract it into its own generic service since we have probably more cases like this in our app.

And this is where the RestoreService enters the stage.

app/restore.service.ts
export class RestoreService<T> {
 originalItem: T;
 currentItem: T;

 setItem (item: T) {
 this.originalItem = item;
 this.currentItem = this.clone(item);
 }

 getItem (): T {
 return this.currentItem;
 }

 restoreItem (): T {
 this.currentItem = this.originalItem;
 return this.getItem();
 }

 clone (item: T): T {
 // super poor clone implementation
 return JSON.parse(JSON.stringify(item));
 }
}
All this tiny service does is define an API to set a value of any type which can be altered, retrieved or set back to its initial value. That’s exactly what we need to implement the desired functionality.

Our HeroEditComponent uses this services under the hood for its hero property. It intercepts the get and set method to delegate the actual work to our RestoreService which in turn makes sure that we won’t work on the original item but on a copy instead.

At this point we may be scratching our heads asking what this has to do with component injectors?
Look closely at the metadata for our HeroEditComponent. Notice the providers property.

providers: [RestoreService],
This adds a RestoreService provider to the injector of the HeroEditComponent.
Couldn’t we simply alter our root NgModule to include this provider?

app/app.module.ts (bad-alternative)
// Don't do this!
@NgModule({
 imports: [
 BrowserModule,
 FormsModule
],
 providers: [HeroesService, RestoreService],
 declarations: [HeroesListComponent],
 bootstrap: [
 HeroesListComponent,
 HeroCardComponent,
 HeroEditorComponent
]
})
Technically we could, but our component wouldn’t quite behave the way it is supposed to. Remember that each injector treats the services that it provides as singletons. However, in order to be able to have multiple instances of HeroEditComponent edit multiple heroes at the same time we need to have multiple instances of the RestoreService. More specifically, each instance of HeroEditComponent needs to be bound to its own instance of the RestoreService.

By configuring a provider for the RestoreService on the HeroEditComponent, we get exactly one new instance of the RestoreServiceper HeroEditComponent.

Does that mean that services aren’t singletons anymore in Angular 2? Yes and no.
There can be only one instance of a service type in a particular injector.
But we've learned that we can have multiple injectors operating at different levels of the application's component tree.
Any of those injectors could have its own instance of the service.

If we defined a RestoreService provider only on the root component,
we would have exactly one instance of that service and it would be shared across the entire application.

That’s clearly not what we want in this scenario. We want each component to have its own instance of the RestoreService.
Defining (or redefining) a provider at the component level creates a new instance of the service for each new instance
of that component. We've made the RestoreService a kind of "private" singleton for each HeroEditComponent,
scoped to that component instance and its child components.

HTTP Client
HTTP is the primary protocol for browser/server communication.

The WebSocket protocol is another important communication technology;
we won't cover it in this chapter.

Modern browsers support two HTTP-based APIs:
XMLHttpRequest (XHR) and
JSONP. A few browsers also support
Fetch.

The Angular HTTP library simplifies application programming of the XHR and JSONP APIs
as we'll learn in this chapter covering:

	HTTP client sample overview

	Fetch data with http.get
	 RxJS Observable of HTTP Responses

	 Enabling RxJS Operators

	Extract JSON data

	Error handling

	Send data to the server
	 Promises instead of observables

	Cross-origin requests: Wikipedia example
 	 Set query string parameters

 	 Debounce search term input

	Appendix: the in-memory web api service

We illustrate these topics with code that you can run live.

Demos

This chapter describes server communication with the help of the following demos

	HTTP client: Tour of Heroes with Observables

	HTTP client: Tour of Heroes with Promises

	JSONP client: Wikipedia to fetch data from a service that does not support CORS

	JSONP client: Wikipedia using observable operators to reduce server calls

These demos are orchestrated by the root AppComponent

app/app.component.ts
import { Component } from '@angular/core';

// Add the RxJS Observable operators we need in this app.
import './rxjs-operators';

@Component({
 selector: 'my-app',
 template: `
 <hero-list></hero-list>
 <hero-list-promise></hero-list-promise>
 <my-wiki></my-wiki>
 <my-wiki-smart></my-wiki-smart>
 `
})
export class AppComponent { }
There is nothing remarkable here except for the import of RxJS operators.

// Add the RxJS Observable operators we need in this app.
import './rxjs-operators';
We'll talk about that below when we're ready to explore observables.

First, we have to configure our application to use server communication facilities.

Providing HTTP Services

We use the Angular Http client to communicate with a server using a familiar HTTP request/response protocol.
The Http client is one of a family of services in the Angular HTTP library.

SystemJS knows how to load services from the Angular HTTP library when we import from the @angular/http module
because we registered that module name in the system.config file.

Before we can use the Http client , we'll have to register it as a service provider with the Dependency Injection system.

In this demo, we register providers by importing other NgModules to our root NgModule.

app/app.module.ts (v1)
import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';
import { FormsModule } from '@angular/forms';
import { HttpModule, JsonpModule } from '@angular/http';

import { AppComponent } from './app.component';

@NgModule({
 imports: [
 BrowserModule,
 FormsModule,
 HttpModule,
 JsonpModule
],
 declarations: [AppComponent],
 bootstrap: [AppComponent]
})
export class AppModule { }
We begin by importing the symbols we need, most of them familiar by now.
The newcomers are the HttpModule and the JsonpModule from the Angular HTTP library.

We add these modules to the application by passing them to the imports array in our root NgModule.

We need the HttpModule to make HTTP calls.
We don't need the JsonpModule for plain HTTP.
We will demonstrate JSONP support later in this chapter.
We're loading its module now to save time.

The Tour of Heroes HTTP Client Demo

Our first demo is a mini-version of the tutorial's "Tour of Heroes" (ToH) application.
This version gets some heroes from the server, displays them in a list, lets us add new heroes, and saves them to the server.
We use the Angular Http client to communicate via XMLHttpRequest (XHR).

It works like this.

[image: ToH mini app]This demo has a single component, the HeroListComponent. Here's its template:

app/toh/hero-list.component.html (template)
<h1>Tour of Heroes ({{mode}})</h1>
<h3>Heroes:</h3>

 <li *ngFor="let hero of heroes">
 {{hero.name}}

New hero name:
<input #newHeroName />
<button (click)="addHero(newHeroName.value); newHeroName.value=''">
 Add Hero
</button>
<div class="error" *ngIf="errorMessage">{{errorMessage}}</div>
It presents the list of heroes with an ngFor.
Below the list is an input box and an Add Hero button where we can enter the names of new heroes
and add them to the database.
We use a template reference variable, newHeroName, to access the
value of the input box in the (click) event binding.
When the user clicks the button, we pass that value to the component's addHero method and then
clear it to make it ready for a new hero name.

Below the button is an area for an error message.

The HeroListComponent class

Here's the component class:

app/toh/hero-list.component.ts (class)
export class HeroListComponent implements OnInit {
 errorMessage: string;
 heroes: Hero[];
 mode = 'Observable';

 constructor (private heroService: HeroService) {}

 ngOnInit() { this.getHeroes(); }

 getHeroes() {
 this.heroService.getHeroes()
 .subscribe(
 heroes => this.heroes = heroes,
 error => this.errorMessage = <any>error);
 }

 addHero (name: string) {
 if (!name) { return; }
 this.heroService.addHero(name)
 .subscribe(
 hero => this.heroes.push(hero),
 error => this.errorMessage = <any>error);
 }
}
Angular injects a HeroService into the constructor
and the component calls that service to fetch and save data.

The component does not talk directly to the Angular Http client!
The component doesn't know or care how we get the data.
It delegates to the HeroService.

This is a golden rule: always delegate data access to a supporting service class.

Although at runtime the component requests heroes immediately after creation,
we do not call the service's get method in the component's constructor.
We call it inside the ngOnInit lifecycle hook instead
and count on Angular to call ngOnInit when it instantiates this component.

This is a best practice.
Components are easier to test and debug when their constructors are simple and all real work
(especially calling a remote server) is handled in a separate method.

The service's getHeroes() and addHero() methods return an Observable of hero data that the Angular Http client fetched from the server.

Observables are a big topic, beyond the scope of this chapter.
But we need to know a little about them to appreciate what is going on here.

We should think of an Observable as a stream of events published by some source.
We listen for events in this stream by subscribing to the Observable.
In these subscriptions we specify the actions to take when the web request
produces a success event (with the hero data in the event payload) or a fail event (with the error in the payload).

With our basic intuitions about the component squared away, we're ready to look inside the HeroService.

Fetch data with the HeroService

In many of our previous samples we faked the interaction with the server by
returning mock heroes in a service like this one:

import { Injectable } from '@angular/core';

import { Hero } from './hero';
import { HEROES } from './mock-heroes';

@Injectable()
export class HeroService {
 getHeroes(): Promise<Hero[]> {
 return Promise.resolve(HEROES);
 }
}
In this chapter, we revise that HeroService to get the heroes from the server using the Angular Http client service:

app/toh/hero.service.ts (revised)
import { Injectable } from '@angular/core';
import { Http, Response } from '@angular/http';

import { Hero } from './hero';
import { Observable } from 'rxjs/Observable';

@Injectable()
export class HeroService {
 constructor (private http: Http) {}

 private heroesUrl = 'app/heroes'; // URL to web API

 getHeroes (): Observable<Hero[]> {
 return this.http.get(this.heroesUrl)
 .map(this.extractData)
 .catch(this.handleError);
 }
 private extractData(res: Response) {
 let body = res.json();
 return body.data || { };
 }

 private handleError (error: any) {
 // In a real world app, we might use a remote logging infrastructure
 // We'd also dig deeper into the error to get a better message
 let errMsg = (error.message) ? error.message :
 error.status ? `${error.status} - ${error.statusText}` : 'Server error';
 console.error(errMsg); // log to console instead
 return Observable.throw(errMsg);
 }
}
Notice that the Angular Http client service is
injected into the HeroService constructor.

constructor (private http: Http) {}
Look closely at how we call http.get

app/toh/hero.service.ts (getHeroes)
getHeroes (): Observable<Hero[]> {
 return this.http.get(this.heroesUrl)
 .map(this.extractData)
 .catch(this.handleError);
}
We pass the resource URL to get and it calls the server which should return heroes.

It will return heroes once we've set up the in-memory web api
described in the appendix below.
Alternatively, we can (temporarily) target a JSON file by changing the endpoint URL:

private heroesUrl = 'app/heroes.json'; // URL to JSON file

The return value may surprise us.
Many of us who are familiar with asynchronous methods in modern JavaScript would expect the get method to return a
promise.
We'd expect to chain a call to then() and extract the heroes.
Instead we're calling a map() method.
Clearly this is not a promise.

In fact, the http.get method returns an Observable of HTTP Responses (Observable<Response>) from the RxJS library
and map is one of the RxJS operators.

RxJS Library

RxJS ("Reactive Extensions") is a 3rd party library, endorsed by Angular,
that implements the asynchronous observable pattern.

All of our Developer Guide samples have installed the RxJS npm package and loaded via system.js
because observables are used widely in Angular applications.
We certainly need it now when working with the HTTP client.
And we must take a critical extra step to make RxJS observables usable.

Enable RxJS Operators

The RxJS library is quite large.
Size matters when we build a production application and deploy it to mobile devices.
We should include only those features that we actually need.

Accordingly, Angular exposes a stripped down version of Observable in the rxjs/Observable module,
a version that lacks most of the operators including some we'd like to use here
such as the map method we called above in getHeroes.

It's up to us to add the operators we need.

We could add every RxJS operators with a single import statement.
While that is the easiest thing to do, we'd pay a penalty in extended launch time and application size
because the full library is so big. We only use a few operators in our app.

Instead, we'll import each Observable operator and static class method, one-by-one, until we have a custom Observable implementation tuned
precisely to our requirements. We'll put the import statements in one app/rxjs-operators.ts file.

app/rxjs-operators.ts
// import 'rxjs/Rx'; // adds ALL RxJS statics & operators to Observable

// See node_module/rxjs/Rxjs.js
// Import just the rxjs statics and operators we need for THIS app.

// Statics
import 'rxjs/add/observable/throw';

// Operators
import 'rxjs/add/operator/catch';
import 'rxjs/add/operator/debounceTime';
import 'rxjs/add/operator/distinctUntilChanged';
import 'rxjs/add/operator/map';
import 'rxjs/add/operator/switchMap';
import 'rxjs/add/operator/toPromise';
If we forget an operator, the TypeScript compiler will warn that it's missing and we'll update this file.

We don't need all of these particular operators in the HeroService — just map, catch and throw.
We'll need the other operators later, in a Wiki example below.

Finally, we import rxjs-operatoritself in our app.component.ts:

app/app.component.ts (import rxjs)
// Add the RxJS Observable operators we need in this app.
import './rxjs-operators';
Let's return to our study of the HeroService.

Process the response object

Remember that our getHeroes() method mapped the http.get response object to heroes with an extractData helper method:

app/toh/hero.service.ts (excerpt)
private extractData(res: Response) {
 let body = res.json();
 return body.data || { };
}
The response object does not hold our data in a form we can use directly.
To make it useful in our application we must parse the response data into a JSON object

Parse to JSON

The response data are in JSON string form.
We must parse that string into JavaScript objects which we do by calling response.json().

This is not Angular's own design.
The Angular HTTP client follows the Fetch specification for the
response object returned by the Fetch function.
That spec defines a json() method that parses the response body into a JavaScript object.

We shouldn't expect the decoded JSON to be the heroes array directly.
The server we're calling always wraps JSON results in an object with a data
property. We have to unwrap it to get the heroes.
This is conventional web api behavior, driven by
security concerns.

Make no assumptions about the server API.
Not all servers return an object with a data property.

Do not return the response object

Our getHeroes() could have returned the HTTP response. Bad idea!
The point of a data service is to hide the server interaction details from consumers.
The component that calls the HeroService wants heroes.
It has no interest in what we do to get them.
It doesn't care where they come from.
And it certainly doesn't want to deal with a response object.

HTTP GET is delayed The http.get does not send the request just yet! This observable is
cold
which means the request won't go out until something subscribes to the observable.
That something is the HeroListComponent.

Always handle errors

Whenever we deal with I/O we must be prepared for something to go wrong as it surely will.
We should catch errors in the HeroService and do something with them.
We may also pass an error message back to the component for presentation to the user
but only if we can say something the user can understand and act upon.

In this simple app we provide rudimentary error handling in both the service and the component.

The eagle-eyed reader may have spotted our use of the catch operator in conjunction with a handleError method.
We haven't discussed so far how that actually works.

We use the Observable catch operator on the service level.
It takes an error handling function with an error object as the argument.
Our service handler, handleError, logs the response to the console,
transforms the error into a user-friendly message, and returns the message in a new, failed observable via Observable.throw.

app/toh/hero.service.ts (excerpt)
getHeroes (): Observable<Hero[]> {
 return this.http.get(this.heroesUrl)
 .map(this.extractData)
 .catch(this.handleError);
}
private handleError (error: any) {
 // In a real world app, we might use a remote logging infrastructure
 // We'd also dig deeper into the error to get a better message
 let errMsg = (error.message) ? error.message :
 error.status ? `${error.status} - ${error.statusText}` : 'Server error';
 console.error(errMsg); // log to console instead
 return Observable.throw(errMsg);
}
HeroListComponent error handling
Back in the HeroListComponent, where we called heroService.getHeroes(),
we supply the subscribe function with a second function parameter to handle the error message.
It sets an errorMessage variable which we've bound conditionally in the HeroListComponent template.

app/toh/hero-list.component.ts (getHeroes)
getHeroes() {
 this.heroService.getHeroes()
 .subscribe(
 heroes => this.heroes = heroes,
 error => this.errorMessage = <any>error);
}
Want to see it fail? Reset the api endpoint in the HeroService to a bad value. Remember to restore it!

Send data to the server

So far we've seen how to retrieve data from a remote location using an HTTP service.
Let's add the ability to create new heroes and save them in the backend.

We'll create an easy method for the HeroListComponent to call, an addHero() method that takes
just the name of a new hero:

addHero (name: string): Observable<Hero> {
To implement it, we need to know some details about the server's api for creating heroes.

Our data server follows typical REST guidelines.
It expects a POST request
at the same endpoint where we GET heroes.
It expects the new hero data to arrive in the body of the request,
structured like a Hero entity but without the id property.
The body of the request should look like this:

{ "name": "Windstorm" }The server will generate the id and return the entire JSON representation
of the new hero including its generated id. The hero arrives tucked inside a response object
with its own data property.

Now that we know how the API works, we implement addHero()like this:

app/toh/hero.service.ts (additional imports)
import { Headers, RequestOptions } from '@angular/http';
app/toh/hero.service.ts (addHero)
 addHero (name: string): Observable<Hero> {
 let body = JSON.stringify({ name });
 let headers = new Headers({ 'Content-Type': 'application/json' });
 let options = new RequestOptions({ headers: headers });

 return this.http.post(this.heroesUrl, body, options)
 .map(this.extractData)
 .catch(this.handleError);
 }

The Content-Type header allows us to inform the server that the body will represent JSON.

Headers are one of the RequestOptions.
Compose the options object and pass it in as the third parameter of the post method, as shown above.

Body

Despite the content type being specified as JSON, the POST body must actually be a string.
Hence, we explicitly encode the JSON hero content before passing it in as the body argument.

We may be able to skip the JSON.stringify step in the near future.

JSON results

As with getHeroes(), we extract the data from the response using the
extractData() helper.

Back in the HeroListComponent, we see that its addHero() method subscribes to the observable returned by the service's addHero() method.
When the data, arrive it pushes the new hero object into its heroes array for presentation to the user.

app/toh/hero-list.component.ts (addHero)
addHero (name: string) {
 if (!name) { return; }
 this.heroService.addHero(name)
 .subscribe(
 hero => this.heroes.push(hero),
 error => this.errorMessage = <any>error);
}
Fall back to Promises
Although the Angular http client API returns an Observable<Response> we can turn it into a
Promise if we prefer.
It's easy to do and a promise-based version looks much like the observable-based version in simple cases.

While promises may be more familiar, observables have many advantages.
Don't rush to promises until you give observables a chance.

Let's rewrite the HeroService using promises , highlighting just the parts that are different.

getHeroes (): Promise<Hero[]> {
 return this.http.get(this.heroesUrl)
 .toPromise()
 .then(this.extractData)
 .catch(this.handleError);
}

addHero (name: string): Promise<Hero> {
 let body = JSON.stringify({ name });
 let headers = new Headers({ 'Content-Type': 'application/json' });
 let options = new RequestOptions({ headers: headers });

 return this.http.post(this.heroesUrl, body, options)
 .toPromise()
 .then(this.extractData)
 .catch(this.handleError);
}

private extractData(res: Response) {
 let body = res.json();
 return body.data || { };
}

private handleError (error: any) {
 // In a real world app, we might use a remote logging infrastructure
 // We'd also dig deeper into the error to get a better message
 let errMsg = (error.message) ? error.message :
 error.status ? `${error.status} - ${error.statusText}` : 'Server error';
 console.error(errMsg); // log to console instead
 return Promise.reject(errMsg);
}
 getHeroes (): Observable<Hero[]> {
 return this.http.get(this.heroesUrl)
 .map(this.extractData)
 .catch(this.handleError);
 }

 addHero (name: string): Observable<Hero> {
 let body = JSON.stringify({ name });
 let headers = new Headers({ 'Content-Type': 'application/json' });
 let options = new RequestOptions({ headers: headers });

 return this.http.post(this.heroesUrl, body, options)
 .map(this.extractData)
 .catch(this.handleError);
 }

 private extractData(res: Response) {
 let body = res.json();
 return body.data || { };
 }

 private handleError (error: any) {
 // In a real world app, we might use a remote logging infrastructure
 // We'd also dig deeper into the error to get a better message
 let errMsg = (error.message) ? error.message :
 error.status ? `${error.status} - ${error.statusText}` : 'Server error';
 console.error(errMsg); // log to console instead
 return Observable.throw(errMsg);
 }
Converting from an observable to a promise is as simple as calling toPromise(success, fail).

We move the observable's map callback to the first success parameter and its catch callback to the second fail parameter
and we're done!
Or we can follow the promise then.catch pattern as we do in the second addHero example.

Our errorHandler forwards an error message as a failed promise instead of a failed Observable.

The diagnostic log to console is just one more then in the promise chain.

We have to adjust the calling component to expect a Promise instead of an Observable.

getHeroes() {
 this.heroService.getHeroes()
 .then(
 heroes => this.heroes = heroes,
 error => this.errorMessage = <any>error);
}

addHero (name: string) {
 if (!name) { return; }
 this.heroService.addHero(name)
 .then(
 hero => this.heroes.push(hero),
 error => this.errorMessage = <any>error);
}
 getHeroes() {
 this.heroService.getHeroes()
 .subscribe(
 heroes => this.heroes = heroes,
 error => this.errorMessage = <any>error);
 }

 addHero (name: string) {
 if (!name) { return; }
 this.heroService.addHero(name)
 .subscribe(
 hero => this.heroes.push(hero),
 error => this.errorMessage = <any>error);
 }
The only obvious difference is that we call then on the returned promise instead of subscribe.
We give both methods the same functional arguments.

The less obvious but critical difference is that these two methods return very different results!

The promise-based then returns another promise. We can keep chaining more then and catch calls, getting a new promise each time.

The subscribe method returns a Subscription. A Subscription is not another Observable.
It's the end of the line for observables. We can't call map on it or call subscribe again.
The Subscription object has a different purpose, signified by its primary method, unsubscribe.

Learn more about observables to understand the implications and consequences of subscriptions.

Cross-origin requests: Wikipedia example
We just learned how to make XMLHttpRequests using the Angular Http service.
This is the most common approach for server communication.
It doesn't work in all scenarios.

For security reasons, web browsers block XHR calls to a remote server whose origin is different from the origin of the web page.
The origin is the combination of URI scheme, hostname and port number.
This is called the Same-origin Policy.

Modern browsers do allow XHR requests to servers from a different origin if the server supports the
CORS protocol.
If the server requires user credentials, we'll enable them in the request headers.

Some servers do not support CORS but do support an older, read-only alternative called JSONP.
Wikipedia is one such server.

Search wikipedia

Let's build a simple search that shows suggestions from wikipedia as we type in a text box.

[image: Wikipedia search app (v.1)]Wikipedia offers a modern CORS API and a legacy JSONP search API. Let's use the latter for this example.
The Angular Jsonp service both extends the Http service for JSONP and restricts us to GET requests.
All other HTTP methods throw an error because JSONP is a read-only facility.

As always, we wrap our interaction with an Angular data access client service inside a dedicated service, here called WikipediaService.

app/wiki/wikipedia.service.ts
import { Injectable } from '@angular/core';
import { Jsonp, URLSearchParams } from '@angular/http';

@Injectable()
export class WikipediaService {
 constructor(private jsonp: Jsonp) {}

 search (term: string) {

 let wikiUrl = 'http://en.wikipedia.org/w/api.php';

 let params = new URLSearchParams();
 params.set('search', term); // the user's search value
 params.set('action', 'opensearch');
 params.set('format', 'json');
 params.set('callback', 'JSONP_CALLBACK');

 // TODO: Add error handling
 return this.jsonp
 .get(wikiUrl, { search: params })
 .map(response => <string[]> response.json()[1]);
 }
}
The constructor expects Angular to inject its jsonp service.
We made that service available by importing the JsonpModule into our root NgModule.

Search parameters

The Wikipedia 'opensearch' API
expects four parameters (key/value pairs) to arrive in the request URL's query string.
The keys are search, action, format, and callback.
The value of the search key is the user-supplied search term to find in Wikipedia.
The other three are the fixed values "opensearch", "json", and "JSONP_CALLBACK" respectively.

The JSONP technique requires that we pass a callback function name to the server in the query string: callback=JSONP_CALLBACK.
The server uses that name to build a JavaScript wrapper function in its response which Angular ultimately calls to extract the data.
All of this happens under the hood.

If we're looking for articles with the word "Angular", we could construct the query string by hand and call jsonp like this:

let queryString =
 `?search=${term}&action=opensearch&format=json&callback=JSONP_CALLBACK`;

return this.jsonp
 .get(wikiUrl + queryString)
 .map(response => <string[]> response.json()[1]);
In more parameterized examples we might prefer to build the query string with the Angular URLSearchParams helper as shown here:

app/wiki/wikipedia.service.ts (search parameters)
let params = new URLSearchParams();
params.set('search', term); // the user's search value
params.set('action', 'opensearch');
params.set('format', 'json');
params.set('callback', 'JSONP_CALLBACK');
This time we call jsonp with two arguments: the wikiUrl and an options object whose search property is the params object.

app/wiki/wikipedia.service.ts (call jsonp)
// TODO: Add error handling
return this.jsonp
 .get(wikiUrl, { search: params })
 .map(response => <string[]> response.json()[1]);
Jsonp flattens the params object into the same query string we saw earlier before putting the request on the wire.

The WikiComponent

Now that we have a service that can query the Wikipedia API,
we turn to the component that takes user input and displays search results.

app/wiki/wiki.component.ts
import { Component } from '@angular/core';
import { Observable } from 'rxjs/Observable';

import { WikipediaService } from './wikipedia.service';

@Component({
 selector: 'my-wiki',
 template: `
 <h1>Wikipedia Demo</h1>
 <p><i>Fetches after each keystroke</i></p>

 <input #term (keyup)="search(term.value)"/>

 <li *ngFor="let item of items | async">{{item}}

 `,
 providers: [WikipediaService]
})
export class WikiComponent {
 items: Observable<string[]>;

 constructor (private wikipediaService: WikipediaService) {}

 search (term: string) {
 this.items = this.wikipediaService.search(term);
 }
}
The component presents an <input> element search box to gather search terms from the user.
and calls a search(term) method after each keyup event.

The search(term) method delegates to our WikipediaService which returns an observable array of string results (Observable<string[]>).
Instead of subscribing to the observable inside the component as we did in the HeroListComponent,
we forward the observable result to the template (via items) where the async pipe
in the ngFor handles the subscription.

We often use the async pipe in read-only components where the component has no need to interact with the data.
We couldn't use the pipe in the HeroListComponent because the "add hero" feature pushes newly created heroes into the list.

Our wasteful app

Our wikipedia search makes too many calls to the server.
It is inefficient and potentially expensive on mobile devices with limited data plans.

1. Wait for the user to stop typing

At the moment we call the server after every key stroke.
The app should only make requests when the user stops typing .
Here's how it should work — and will work — when we're done refactoring:

[image: Wikipedia search app (v.2)]2. Search when the search term changes

Suppose the user enters the word angular in the search box and pauses for a while.
The application issues a search request for Angular.

Then the user backspaces over the last three letters, lar, and immediately re-types lar before pausing once more.
The search term is still "angular". The app shouldn't make another request.

3. Cope with out-of-order responses

The user enters angular, pauses, clears the search box, and enters http.
The application issues two search requests, one for angular and one for http.

Which response will arrive first? We can't be sure.
A load balancer could dispatch the requests to two different servers with different response times.
The results from the first angular request might arrive after the later http results.
The user will be confused if we display the angular results to the http query.

When there are multiple requests in-flight, the app should present the responses
in the original request order. That won't happen if angular results arrive last.

More fun with Observables

We can address these problems and improve our app with the help of some nifty observable operators.

We could make our changes to the WikipediaService.
But we sense that our concerns are driven by the user experience so we update the component class instead.

app/wiki/wiki-smart.component.ts
import { Component } from '@angular/core';
import { Observable } from 'rxjs/Observable';
import { Subject } from 'rxjs/Subject';

import { WikipediaService } from './wikipedia.service';

@Component({
 selector: 'my-wiki-smart',
 template: `
 <h1>Smarter Wikipedia Demo</h1>
 <p><i>Fetches when typing stops</i></p>

 <input #term (keyup)="search(term.value)"/>

 <li *ngFor="let item of items | async">{{item}}

 `,
 providers: [WikipediaService]
})
export class WikiSmartComponent {

 constructor (private wikipediaService: WikipediaService) { }

 private searchTermStream = new Subject<string>();

 search(term: string) { this.searchTermStream.next(term); }

 items: Observable<string[]> = this.searchTermStream
 .debounceTime(300)
 .distinctUntilChanged()
 .switchMap((term: string) => this.wikipediaService.search(term));
}
We made no changes to the template or metadata, confining them all to the component class.
Let's review those changes.

Create a stream of search terms

We're binding to the search box keyup event and calling the component's search method after each keystroke.

We turn these events into an observable stream of search terms using a Subject
which we import from the RxJS observable library:

import { Subject } from 'rxjs/Subject';
Each search term is a string, so we create a new Subject of type string called searchTermStream.
After every keystroke, the search method adds the search box value to that stream
via the subject's next method.

private searchTermStream = new Subject<string>();

search(term: string) { this.searchTermStream.next(term); }
Listen for search terms

Earlier, we passed each search term directly to the service and bound the template to the service results.
Now we listen to the stream of terms, manipulating the stream before it reaches the WikipediaService.

items: Observable<string[]> = this.searchTermStream
 .debounceTime(300)
 .distinctUntilChanged()
 .switchMap((term: string) => this.wikipediaService.search(term));
We wait for the user to stop typing for at least 300 milliseconds
(debounceTime).
Only changed search values make it through to the service
(distinctUntilChanged).

The WikipediaService returns a separate observable of string arrays (Observable<string[]>) for each request.
We could have multiple requests in flight, all awaiting the server's reply,
which means multiple observables-of-strings could arrive at any moment in any order.

The switchMap
(formerly known as flatMapLatest) returns a new observable that combines these WikipediaService observables,
re-arranges them in their original request order,
and delivers to subscribers only the most recent search results.

The displayed list of search results stays in sync with the user's sequence of search terms.

We added the debounceTime, distinctUntilChanged, and switchMap operators to the RxJS Observable class
in rxjs-operators as described above

Appendix: Tour of Heroes in-memory server

If we only cared to retrieve data, we could tell Angular to get the heroes from a heroes.json file like this one:

app/heroes.json
{
 "data": [
 { "id": "1", "name": "Windstorm" },
 { "id": "2", "name": "Bombasto" },
 { "id": "3", "name": "Magneta" },
 { "id": "4", "name": "Tornado" }
]
}
We wrap the heroes array in an object with a data property for the same reason that a data server does:
to mitigate the security risk
posed by top-level JSON arrays.

We'd set the endpoint to the JSON file like this:

private heroesUrl = 'app/heroes.json'; // URL to JSON file
The get heroes scenario would work.
But we want to save data too. We can't save changes to a JSON file. We need a web API server.
We didn't want the hassle of setting up and maintaining a real server for this chapter.
So we turned to an in-memory web API simulator instead.

The in-memory web api is not part of the Angular core.
It's an optional service in its own angular2-in-memory-web-api library
that we installed with npm (see package.json) and
registered for module loading by SystemJS (see systemjs.config.js)

The in-memory web API gets its data from a custom application class with a createDb()
method that returns a map whose keys are collection names and whose values
are arrays of objects in those collections.

Here's the class we created for this sample based on the JSON data:

app/hero-data.ts
import { InMemoryDbService } from 'angular2-in-memory-web-api';
export class HeroData implements InMemoryDbService {
 createDb() {
 let heroes = [
 { id: '1', name: 'Windstorm' },
 { id: '2', name: 'Bombasto' },
 { id: '3', name: 'Magneta' },
 { id: '4', name: 'Tornado' }
];
 return {heroes};
 }
}
Ensure that the HeroService endpoint refers to the web API:

private heroesUrl = 'app/heroes'; // URL to web API
Finally, redirect client HTTP requests to the in-memory web API.

This redirection is easy to configure with the in-memory web API service module.
by adding the InMemoryWebApiModule to the AppModule.imports list.
At the same time, we calling its forRoot configuration method with the HeroData class.

InMemoryWebApiModule.forRoot(HeroData)
How it works

Angular's http service delegates the client/server communication tasks
to a helper service called the XHRBackend.

Using standard Angular provider registration techniques, the InMemoryWebApiModule
replaces the default XHRBackend service with its own in-memory alternative.
The forRoot method initialize the in-memory web API with seed data from the mock hero dataset at the same time.

The forRoot method name is a strong reminder that you should only call the InMemoryWebApiModule once
while setting the metadata for the root AppModule. Don't call it again!.

Here is the revised (and final) version of app/app.module.ts> demonstrating these steps.

app/app.module.ts (excerpt)
import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';
import { FormsModule } from '@angular/forms';
import { HttpModule, JsonpModule } from '@angular/http';

import { InMemoryWebApiModule } from 'angular2-in-memory-web-api';
import { HeroData } from './hero-data';

import { AppComponent } from './app.component';

import { HeroListComponent } from './toh/hero-list.component';
import { HeroListPromiseComponent } from './toh/hero-list.component.promise';

import { WikiComponent } from './wiki/wiki.component';
import { WikiSmartComponent } from './wiki/wiki-smart.component';

@NgModule({
 imports: [
 BrowserModule,
 FormsModule,
 HttpModule,
 JsonpModule,
 InMemoryWebApiModule.forRoot(HeroData)
],
 declarations: [
 AppComponent,
 HeroListComponent,
 HeroListPromiseComponent,
 WikiComponent,
 WikiSmartComponent
],
 bootstrap: [AppComponent]
})
export class AppModule { }
See the full source code in the .

Lifecycle Hooks

A Component has a lifecycle managed by Angular itself. Angular creates it, renders it, creates and renders its children,
checks it when its data-bound properties change, and destroys it before removing it from the DOM.

Angular offers component lifecycle hooks
that give us visibility into these key moments and the ability to act when they occur.

We cover these hooks in this chapter and demonstrate how they work in code.

	The lifecycle hooks

	The hook-call sequence

	Other Angular lifecycle hooks

	The lifecycle sample
	All

	Spying OnInit and OnDestroy

	OnChanges

	DoCheck

	AfterViewInit and AfterViewChecked

	AfterContentInit and AfterContentChecked

Try the .

Component lifecycle Hooks

Directive and component instances have a lifecycle
as Angular creates, updates, and destroys them.

Developers can tap into key moments in that lifecycle by implementing
one or more of the Lifecycle Hook interfaces in the Angular core library.

Each interface has a single hook method whose name is the interface name prefixed with ng.
For example, the OnInit interface has a hook method named ngOnInit.
We might implement it in a component class like this:

peek-a-boo.component.ts (excerpt)
export class PeekABoo implements OnInit {
 constructor(private logger: LoggerService) { }

 // implement OnInit's `ngOnInit` method
 ngOnInit() { this.logIt(`OnInit`); }

 protected logIt(msg: string) {
 this.logger.log(`#${nextId++} ${msg}`);
 }
}
No directive or component will implement all of them and some of the hooks only make sense for components.
Angular only calls a directive/component hook method if it is defined.

Interface optional?

The interfaces are optional for JavaScript and Typescript developers from a purely technical perspective.
The JavaScript language doesn't have interfaces.
Angular can't see TypeScript interfaces at runtime because they disappear from the transpiled JavaScript.

Fortunately, they aren't necessary.
We don't have to add the lifecycle hook interfaces to our directives and components to benefit from the hooks themselves.

Angular instead inspects our directive and component classes and calls the hook methods if they are defined.
Angular will find and call methods like ngOnInit(), with or without the interfaces.

Nonetheless, we strongly recommend adding interfaces to TypeScript directive classes
in order to benefit from strong typing and editor tooling.

Here are the component lifecycle hook methods:

Directives and Components

	Hook	Purpose
	ngOnInit	Initialize the directive/component after Angular initializes the data-bound input properties.

	ngOnChanges	Respond after Angular sets a data-bound input property.
The method receives a changes object of current and previous values.

	ngDoCheck	Detect and act upon changes that Angular can't or won't
detect on its own. Called every change detection run.

	ngOnDestroy	Cleanup just before Angular destroys the directive/component.
Unsubscribe observables and detach event handlers to avoid memory leaks.

Components only

	Hook	Purpose
	ngAfterContentInit	After Angular projects external content into its view.

	ngAfterContentChecked	After Angular checks the bindings of the external content that it projected into its view.

	ngAfterViewInit	After Angular creates the component's view(s).

	ngAfterViewChecked	After Angular checks the bindings of the component's view(s).

Angular does not call the hook methods in this order.

Lifecycle sequence

After Angular creates a component/directive by new-ing its constructor,
it calls the lifecycle hook methods in the following sequence at specific moments:

	Hook	Timing
	ngOnChanges	before ngOnInit and when a data-bound input property value changes.

	ngOnInit	after the first ngOnChanges.

	ngDoCheck	during every Angular change detection cycle.

	ngAfterContentInit	after projecting content into the component.

	ngAfterContentChecked	after every check of projected component content.

	ngAfterViewInit	after initializing the component's views and child views.

	ngAfterViewChecked	after every check of the component's views and child views.

	ngOnDestroy	just before Angular destroys the directive/component.

Other lifecycle hooks

Other Angular sub-systems may have their own lifecycle hooks apart from the component hooks we've listed.

3rd party libraries might implement their hooks as well in order to give us, the developers, more
control over how these libraries are used.

Lifecycle exercises

The
demonstrates the lifecycle hooks in action through a series of exercises
presented as components under the control of the root AppComponent.

They follow a common pattern: a parent component serves as a test rig for
a child component that illustrates one or more of the lifecycle hook methods.

Here's a brief description of each exercise:

	Component	Description
	Peek-a-boo	Demonstrates every lifecycle hook.
Each hook method writes to the on-screen log.

	Spy	Directives have lifecycle hooks too.
We create a SpyDirective that logs when the element it spies upon is
created or destroyed using the ngOnInit and ngOnDestroy hooks.

We apply the SpyDirective to a <div> in an ngFor hero repeater
managed by the parent SpyComponent.

	OnChanges	See how Angular calls the ngOnChanges hook with a changes object
every time one of the component input properties changes.
Shows how to interpret the changes object.

	DoCheck	Implements an ngDoCheck method with custom change detection.
See how often Angular calls this hook and watch it post changes to a log.

	AfterView	Shows what Angular means by a view.
Demonstrates the ngAfterViewInit and ngAfterViewChecked hooks.

	AfterContent	Shows how to project external content into a component and
how to distinguish projected content from a component's view children.
Demonstrates the ngAfterContentInit and ngAfterContentChecked hooks.

	Counter	Demonstrates a combination of a component and a directive
each with its own hooks.

In this example, a CounterComponent logs a change (via ngOnChanges)
every time the parent component increments its input counter property.
Meanwhile, we apply the SpyDirective from the previous example
to the CounterComponent log and watch log entries be created and destroyed.

We discuss the exercises in further detail over this chapter as we learn more about the lifecycle hooks.

Peek-a-boo: all hooks

The PeekABooComponent demonstrates all of the hooks in one component.

In real life, we'd rarely if ever implement all of the interfaces like this.
We do so in peek-a-boo in order to watch Angular call the hooks in the expected order.

In this snapshot, we clicked the Create... button and then the Destroy... button.

[image: Peek-a-boo]The sequence of log messages follows the prescribed hook calling order:
OnChanges, OnInit, DoCheck (3x), AfterContentInit, AfterContentChecked (3x),
AfterViewInit, AfterViewChecked (3x), and OnDestroy.

The constructor isn't an Angular hook per se.
We log in it to confirm that input properties (the name property in this case) have no assigned values at construction.

Had we clicked the Update Hero button, we'd have seen another OnChanges and two more triplets of
DoCheck, AfterContentChecked and AfterViewChecked.
Clearly these three hooks fire a lot and we must keep the logic we put in these hooks
as lean as possible!

Our next examples focus on hook details.

Spying OnInit and OnDestroy

We're going undercover for these two hooks. We want to know when an element is initialized or destroyed,
but we don't want it to know we're watching.

This is the perfect infiltration job for a directive.
Our heroes will never know it's there.

Kidding aside, we're emphasizing two key points:

	Angular calls hook methods for directives as well as components.

	A spy directive can gives us insight into a DOM object that we cannot change directly.
Obviously we can't change the implementation of a native div.
We can't modify a third party component either.
But we can watch both with a directive.

Our sneaky spy directive is simple, consisting almost entirely of ngOnInit and ngOnDestroy hooks
that log messages to the parent via an injected LoggerService.

// Spy on any element to which it is applied.
// Usage: <div mySpy>...</div>
@Directive({selector: '[mySpy]'})
export class SpyDirective implements OnInit, OnDestroy {

 constructor(private logger: LoggerService) { }

 ngOnInit() { this.logIt(`onInit`); }

 ngOnDestroy() { this.logIt(`onDestroy`); }

 private logIt(msg: string) {
 this.logger.log(`Spy #${nextId++} ${msg}`);
 }
}
We can apply the spy to any native or component element and it'll be initialized and destroyed
at the same time as that element.
Here we attach it to the repeated hero <div>

<div *ngFor="let hero of heroes" mySpy class="heroes">
 {{hero}}
</div>
Each spy's birth and death marks the birth and death of the attached hero <div>
with an entry in the Hook Log as we see here:

[image: Spy Directive]Adding a hero results in a new hero <div>. The spy's ngOnInit logs that event.
We see a new entry for each hero.

The Reset button clears the heroes list.
Angular removes all hero divs from the DOM and destroys their spy directives at the same time.
The spy's ngOnDestroy method reports its last moments.

The ngOnInit and ngOnDestroy methods have more vital roles to play in real applications.
Let's see why we need them.

OnInit

We turn to ngOnInit for two main reasons:

	To perform complex initializations shortly after construction

	To set up the component after Angular sets the input properties

An ngOnInit often fetches data for the component as shown in the
Tutorial and HTTP chapters.

We don't fetch data in a component constructor. Why?
Because experienced developers agree that components should be cheap and safe to construct.
We shouldn't worry that a new component will try to contact a remote server when
created under test or before we decide to display it.
Constructors should do no more than set the initial local variables to simple values.

When a component must start working soon after creation,
we can count on Angular to call the ngOnInit method to jumpstart it.
That's where the heavy initialization logic belongs.

Remember also that a directive's data-bound input properties are not set until after construction.
That's a problem if we need to initialize the directive based on those properties.
They'll have been set when our ngOninit runs.

Our first opportunity to access those properties is the ngOnChanges method which
Angular calls before ngOnInit. But Angular calls ngOnChanges many times after that.
It only calls ngOnInit once.

OnDestroy

Put cleanup logic in ngOnDestroy, the logic that must run before Angular destroys the directive.

This is the time to notify another part of the application that this component is going away.

This is the place to free resources that won't be garbage collected automatically.
Unsubscribe from observables and DOM events. Stop interval timers.
Unregister all callbacks that this directive registered with global or application services.
We risk memory leaks if we neglect to do so.

OnChanges

We monitor the OnChanges hook in this example.
Angular calls its ngOnChanges method whenever it detects changes to input properties of the component (or directive).

Here is our implementation of the hook.

OnChangesComponent (ngOnChanges)
ngOnChanges(changes: {[propertyName: string]: SimpleChange}) {
 for (let propName in changes) {
 let chng = changes[propName];
 let cur = JSON.stringify(chng.currentValue);
 let prev = JSON.stringify(chng.previousValue);
 this.changeLog.push(`${propName}: currentValue = ${cur}, previousValue = ${prev}`);
 }
}
The ngOnChanges method takes an object that maps each changed property name to a
SimpleChange object with the current and previous property values.
We iterate over the changed properties and log them.

The input properties for our example OnChangesComponent are hero and power.

@Input() hero: Hero;
@Input() power: string;
The parent binds to them like this:

<on-changes [hero]="hero" [power]="power"></on-changes>
Here's the sample in action as we make changes.

[image: OnChanges]We see log entries as the string value of the power property changes. But the ngOnChanges did not catch changes to hero.name
That's surprising at first.

Angular only calls the hook when the value of the input property changes.
The value of the hero property is the reference to the hero object.
Angular doesn't care that the hero's own name property changed.
The hero object reference didn't change so, from Angular's perspective, there is no change to report!

DoCheck

We can use the DoCheck hook to detect and act upon changes that Angular doesn't catch on its own.

With this method we can detect a change that Angular overlooked.
What we do with that information to refresh the display is a separate matter.

The DoCheck sample extends the OnChanges sample with this implementation of DoCheck:

DoCheckComponent (ngDoCheck)
ngDoCheck() {

 if (this.hero.name !== this.oldHeroName) {
 this.changeDetected = true;
 this.changeLog.push(`DoCheck: Hero name changed to "${this.hero.name}" from "${this.oldHeroName}"`);
 this.oldHeroName = this.hero.name;
 }

 if (this.power !== this.oldPower) {
 this.changeDetected = true;
 this.changeLog.push(`DoCheck: Power changed to "${this.power}" from "${this.oldPower}"`);
 this.oldPower = this.power;
 }

 if (this.changeDetected) {
 this.noChangeCount = 0;
 } else {
 // log that hook was called when there was no relevant change.
 let count = this.noChangeCount += 1;
 let noChangeMsg = `DoCheck called ${count}x when no change to hero or power`;
 if (count === 1) {
 // add new "no change" message
 this.changeLog.push(noChangeMsg);
 } else {
 // update last "no change" message
 this.changeLog[this.changeLog.length - 1] = noChangeMsg;
 }
 }

 this.changeDetected = false;
}
We manually check everything that we care about, capturing and comparing against previous values.
We write a special message to the log when there are no substantive changes
to the hero or the power so we can keep an eye on the method's performance characteristics.

The results are illuminating:

[image: DoCheck]We now are able to detect when the hero's name has changed. But we must be careful.

The ngDoCheck hook is called with enormous frequency —
after every change detection cycle no matter where the change occurred.
It's called over twenty times in this example before the user can do anything.

Most of these initial checks are triggered by Angular's first rendering of unrelated data elsewhere on the page.
Mere mousing into another input box triggers a call.
Relatively few calls reveal actual changes to pertinent data.
Clearly our implementation must be very lightweight or the user experience may suffer.

AfterView

The AfterView sample explores the AfterViewInit and AfterViewChecked hooks that Angular calls
after it creates a component's child views.

Here's a child view that displays a hero's name in an input box:

ChildComponent
@Component({
 selector: 'my-child-view',
 template: '<input [(ngModel)]="hero">'
})
export class ChildViewComponent {
 hero = 'Magneta';
}
The AfterViewComponent displays this child view within its template:

AfterViewComponent (template)
template: `
 <div>-- child view begins --</div>
 <my-child-view></my-child-view>
 <div>-- child view ends --</div>`
The following hooks take action based on changing values within the child view
which we can only reach by querying for the child view via the property decorated with
@ViewChild.

AfterViewComponent (class excerpts)
export class AfterViewComponent implements AfterViewChecked, AfterViewInit {
 private prevHero = '';

 // Query for a VIEW child of type `ChildViewComponent`
 @ViewChild(ChildViewComponent) viewChild: ChildViewComponent;

 ngAfterViewInit() {
 // viewChild is set after the view has been initialized
 this.logIt('AfterViewInit');
 this.doSomething();
 }

 ngAfterViewChecked() {
 // viewChild is updated after the view has been checked
 if (this.prevHero === this.viewChild.hero) {
 this.logIt('AfterViewChecked (no change)');
 } else {
 this.prevHero = this.viewChild.hero;
 this.logIt('AfterViewChecked');
 this.doSomething();
 }
 }
 // ...
}
Abide by the unidirectional data flow rule

The doSomething method updates the screen when the hero name exceeds 10 characters.

AfterViewComponent (doSomething)
// This surrogate for real business logic sets the `comment`
private doSomething() {
 let c = this.viewChild.hero.length > 10 ? `That's a long name` : '';
 if (c !== this.comment) {
 // Wait a tick because the component's view has already been checked
 this.logger.tick_then(() => this.comment = c);
 }
}
Why does the doSomething method wait a tick before updating comment?

Because we must adhere to Angular's unidirectional data flow rule which says that
we may not update the view after it has been composed.
Both hooks fire after the component's view has been composed.

Angular throws an error if we update component's data-bound comment property immediately (try it!).

The LoggerService.tick methods, which are implemented by a call to setTimeout, postpone the update one turn of the of the browser's JavaScript cycle ... and that's long enough.

Here's AfterView in action

[image: AfterView]Notice that Angular frequently calls AfterViewChecked, often when there are no changes of interest.
Write lean hook methods to avoid performance problems.

AfterContent

The AfterContent sample explores the AfterContentInit and AfterContentChecked hooks that Angular calls
after Angular projects external content into the component.

Content projection

Content projection is a way to import HTML content from outside the component and insert that content
into the component's template in a designated spot.

Angular 1 developers know this technique as transclusion.

We'll illustrate with a variation on the previous example
whose behavior and output is almost the same.

This time, instead of including the child view within the template, we'll import it from
the AfterContentComponent's parent. Here's the parent's template.

AfterContentParentComponent (template excerpt)
`<after-content>
 <my-child></my-child>
 </after-content>`
Notice that the <my-child> tag is tucked between the <after-content> tags.
We never put content between a component's element tags unless we intend to project that content
into the component.

Now look at the component's template:

AfterContentComponent (template)
template: `
 <div>-- projected content begins --</div>
 <ng-content></ng-content>
 <div>-- projected content ends --</div>`
The <ng-content> tag is a placeholder for the external content.
They tell Angular where to insert that content.
In this case, the projected content is the <my-child> from the parent.

[image: Projected Content]The tell-tale signs of content projection are (a) HTML between component element tags
and (b) the presence of <ng-content> tags in the component's template.

AfterContent hooks

AfterContent hooks are similar to the AfterView hooks. The key difference is the kind of child component
that we're looking for.

	The AfterView hooks concern ViewChildren, the child components whose element tags
appear within the component's template.

	The AfterContent hooks concern ContentChildren, the child components that Angular
projected into the component.

The following AfterContent hooks take action based on changing values in a content child
which we can only reach by querying for it via the property decorated with
@ContentChild.

AfterContentComponent (class excerpts)
export class AfterContentComponent implements AfterContentChecked, AfterContentInit {
 private prevHero = '';
 comment = '';

 // Query for a CONTENT child of type `ChildComponent`
 @ContentChild(ChildComponent) contentChild: ChildComponent;

 ngAfterContentInit() {
 // contentChild is set after the content has been initialized
 this.logIt('AfterContentInit');
 this.doSomething();
 }

 ngAfterContentChecked() {
 // contentChild is updated after the content has been checked
 if (this.prevHero === this.contentChild.hero) {
 this.logIt('AfterContentChecked (no change)');
 } else {
 this.prevHero = this.contentChild.hero;
 this.logIt('AfterContentChecked');
 this.doSomething();
 }
 }
 // ...
}
No unidirectional flow worries

This component's doSomething method update's the component's data-bound comment property immediately.
There's no need to wait.

Recall that Angular calls both AfterContent hooks before calling either of the AfterView hooks.
Angular completes composition of the projected content before finishing the composition of this component's view.
We still have a window of opportunity to modify that view.

Npm Packages
Angular applications and Angular itself depend upon features and functionality provided by a variety of third-party packages.
These packages are maintained and installed with the Node Package Manager (npm).

Node.js and npm are essential to Angular 2 development.

Get them now if they're not already installed on your machine.

Verify that you are running node v4.x.x or higher and npm 3.x.x or higher
by running the commands node -v and npm -v in a terminal/console window.
Older versions produce errors.

We recommend nvm for managing multiple versions of node and npm. You may need nvm if you already have projects running on your machine that use other versions of node and npm.

We recommend a comprehensive starter-set of packages as specified in the dependencies and devDependencies
sections of the QuickStart
package.json file:

package.json (dependencies)
{
 "dependencies": {
 "@angular/common": "2.0.0-rc.6",
 "@angular/compiler": "2.0.0-rc.6",
 "@angular/compiler-cli": "0.6.0",
 "@angular/core": "2.0.0-rc.6",
 "@angular/forms": "2.0.0-rc.6",
 "@angular/http": "2.0.0-rc.6",
 "@angular/platform-browser": "2.0.0-rc.6",
 "@angular/platform-browser-dynamic": "2.0.0-rc.6",
 "@angular/router": "3.0.0-rc.2",
 "@angular/upgrade": "2.0.0-rc.6",
 "core-js": "^2.4.1",
 "reflect-metadata": "^0.1.3",
 "rxjs": "5.0.0-beta.11",
 "systemjs": "0.19.27",
 "zone.js": "^0.6.17",
 "angular2-in-memory-web-api": "0.0.18",
 "bootstrap": "^3.3.6"
 },
 "devDependencies": {
 "concurrently": "^2.2.0",
 "lite-server": "^2.2.2",
 "typescript": "^1.8.10",
 "typings": "^1.3.2"
 }
}You can use other packages but we recommend this particular set to start with because (a) they work well together and
(b) they include everything you'll need to build and run the sample applications in this series.

Note: A cookbook or guide page may require an additional library such as jQuery.

You'll install more than you need for QuickStart.
No worries!
You only serve to the client those packages that the application actually requests.

This page explains what each package does. You can make substitutions later to suit your tastes and experience.

dependencies and devDependencies

The package.json includes two sets of packages,
dependencies and devDependencies.

The dependencies are essential to running the application.
The devDependencies are only necessary to develop the application.
You can exclude them from production installations by adding --production to the install command, as follows:

npm install my-application --production
dependencies

The dependencies section of package.json contains:

	Features - Feature packages give the application framework and utility capabilities.

	Polyfills - Polyfills plug gaps in the browser's JavaScript implementation.

	Other - Other libraries that support the application such as bootstrap for HTML widgets and styling.

Feature Packages

@angular/core - Critical runtime parts of the framework needed by every application.
Includes all metadata decorators, Component, Directive, dependency injection, and the component lifecycle hooks.

@angular/common - The commonly needed services, pipes, and directives provided by the Angular team.

@angular/compiler - Angular's Template Compiler.
It understands templates and can convert them to code that makes the application run and render.
Typically you don’t interact with the compiler directly; rather, you use it indirectly via platform-browser-dynamic or the offline template compiler.

@angular/platform-browser - Everything DOM and browser related, especially the pieces that help render into DOM.
This package also includes the bootstrapStatic method for bootstrapping applications for production builds that pre-compile templates offline.

@angular/platform-browser-dynamic - Includes Providers and a bootstrap method for applications that
compile templates on the client. Don’t use offline compilation.
Use this package for bootstrapping during development and for bootstrapping plunker samples.

@angular/http - Angular's http client.

@angular/router - Component router.

@angular/upgrade - Set of utilities for upgrading Angular 1 applications.

system.js - A dynamic module loader compatible with the
ES2015 module specification.
Other viable choices include the well-regarded webpack.

Your future applications are likely to require additional packages that provide
HTML controls, themes, data access, and various utilities.

Polyfill packages

Angular requires certain polyfills in the application environment.
Install these polyfills using the npm packages that Angular lists in the peerDependencies section of its package.json.

You must list these packages in the dependencies section of your own package.json.

For background on this requirement, see Why peerDependencies?.

core-js - Patches the global context (window) with essential features of ES2015 (ES6).
 You may substitute an alternative polyfill that provides the same core APIs.
 When these APIs are implemented by the major browsers, this dependency will become unnecessary.

reflect-metadata - A dependency shared between Angular and the TypeScript compiler.
You can update a TypeScript package without upgrading Angular,
which is why this is a dependency of the application and not a dependency of Angular.

rxjs - A polyfill for the Observables specification currently before the
TC39 committee that determines standards for the JavaScript language.
You can pick a preferred version of rxjs (within a compatible version range)
without waiting for Angular updates.

zone.js - A polyfill for the Zone specification currently before the
TC39 committee that determines standards for the JavaScript language.
You can pick a preferred version of zone.js to use (within a compatible version range)
without waiting for Angular updates.

Other helper libraries

angular2-in-memory-web-api - An Angular-supported library that simulates a remote server's web api
without requiring an actual server or real http calls.
Good for demos, samples, and early stage development (before we even have a server).
Read about it in the Http Client page.

bootstrap - Bootstrap is a popular HTML and CSS framework for designing responsive web apps.
Some of the samples improve their appearance with bootstrap.

devDependencies

The packages listed in the devDependencies section of the package.json help you develop the application.
You don't have to deploy them with the production application although there is no harm in doing so.

concurrently -
A utility to run multiple npm commands concurrently on OS/X, Windows, and Linux operating systems.

lite-server -
A light-weight, static file server, by John Papa
with excellent support for Angular apps that use routing.

typescript -
The TypeScript language server, including the tsc TypeScript compiler.

typings - A manager for TypeScript definition files.
Read more about it in the TypeScript Configuration page.

Why peerDependencies?

There isn't a peerDependencies section in the QuickStart package.json.
But Angular has a peerDependencies section in
its package.json, which has important consequences for your application.

It explains why you load the polyfill dependency packages in the QuickStart package.json,
and why you'll need those packages in your own applications.

An explanation of peer dependencies follows.

Packages depend on other packages. For example, your application depends on the Angular package.

Two packages, "A" and "B", could depend on the same third package "C".
"A" and "B" might both list "C" among their dependencies.

What if "A" and "B" depend on different versions of "C" ("C1" and "C2"). The npm package system supports that.
It installs "C1" in the node_modules folder for "A" and "C2" in the node_modules folder for "B".
Now "A" and "B" have their own copies of "C" and they run without interferring with one another.

But there is a problem. Package "A" may require the presence of "C1" without actually calling upon it directly.
"A" may only work if everyone is using "C1". It falls down if any part of the application relies on "C2".

The solution is for "A" to declare that "C1" is a peer dependency.

The difference between a dependency and a peerDependency is roughly this:

A dependency says, "I need this thing directly available to me."

A peerDependency says, "If you want to use me, you need this thing available to you."

The Angular package.json specifies several peer dependency packages,
each pinned to a particular version of a third-party package.

We must install Angular's peerDependencies ourselves.

When npm installs packages listed in your dependencies section,
it also installs the packages listed within their packages dependencies sections.
The process is recursive.

However, as of version 3, npm does not install packages listed in peerDependencies sections.

This means that when your application installs Angular, npm doesn't automatically install
the packages listed in Angular's peerDependencies section.

Fortunately, npm issues a warning (a) When any peer dependencies are missing, or (b)
When the application or any of its other dependencies
installs a different version of a peer dependency.

These warnings guard against accidental failures due to version mismatches.
They leave you in control of package and version resolution.

It is your responsibility to list all peer dependency packages among your own devDependencies.

The future of peerDependencies

The Angular polyfill dependencies are hard requirements. Currently, there is no way to make them optional.

However, there is an npm feature request for "optional peerDependencies," which would allow you to model this relationship better.
When this feature request is implemented, Angular will switch from peerDependencies to optionalPeerDependencies for all polyfills.

Pipes
Every application starts out with what seems like a simple task: get data, transform them, and show them to users.
Getting data could be as simple as creating a local variable or as complex as streaming data over a Websocket.

Once data arrive, we could push their raw toString values directly to the view.
That rarely makes for a good user experience.
E.g., almost everyone prefers a simple birthday date like
April 15, 1988 to the original raw string format
— Fri Apr 15 1988 00:00:00 GMT-0700 (Pacific Daylight Time).

Clearly some values benefit from a bit of massage. We soon discover that we
desire many of the same transformations repeatedly, both within and across many applications.
We almost think of them as styles.
In fact, we'd like to apply them in our HTML templates as we do styles.

Introducing Angular pipes, a way to write display-value transformations that we can declare in our HTML!
Try the .

Using Pipes

A pipe takes in data as input and transforms it to a desired output.
We'll illustrate by transforming a component's birthday property into
a human-friendly date.

app/hero-birthday1.component.ts
import { Component } from '@angular/core';

@Component({
 selector: 'hero-birthday',
 template: `<p>The hero's birthday is {{ birthday | date }}</p>`
})
export class HeroBirthdayComponent {
 birthday = new Date(1988, 3, 15); // April 15, 1988
}
Focus on the component's template.

<p>The hero's birthday is {{ birthday | date }}</p>
Inside the interpolation expression we flow the component's birthday value through the
pipe operator (|) to the Date pipe
function on the right. All pipes work this way.

The Date and Currency pipes need the ECMAScript Internationalization API.
Safari and other older browsers don't support it. We can add support with a polyfill.

<script src="https://cdn.polyfill.io/v2/polyfill.min.js?features=Intl.~locale.en"></script>

Built-in pipes

Angular comes with a stock of pipes such as
DatePipe, UpperCasePipe, LowerCasePipe, CurrencyPipe, and PercentPipe.
They are all immediately available for use in any template.

Learn more about these and many other built-in pipes in the API Reference;
filter for entries that include the word "pipe".

Angular 2 doesn't have a FilterPipe or an OrderByPipe for reasons explained in an appendix below.

Parameterizing a Pipe

A pipe may accept any number of optional parameters to fine-tune its output.
We add parameters to a pipe by following the pipe name with a colon (:) and then the parameter value
(e.g., currency:'EUR'). If our pipe accepts multiple parameters, we separate the values with colons (e.g. slice:1:5)

We'll modify our birthday template to give the date pipe a format parameter.
After formatting the hero's April 15th birthday, it should render as 04/15/88:

<p>The hero's birthday is {{ birthday | date:"MM/dd/yy" }} </p>
The parameter value can be any valid
template expression
such as a string literal or a component property.
In other words, we can control the format through a binding the same way we control the birthday value through a binding.

Let's write a second component that binds the pipe's format parameter
to the component's format property. Here's the template for that component:

app/hero-birthday2.component.ts (template)
template: `
 <p>The hero's birthday is {{ birthday | date:format }}</p>
 <button (click)="toggleFormat()">Toggle Format</button>
`
We also added a button to the template and bound its click event to the component's toggleFormat() method.
That method toggles the component's format property between a short form
('shortDate') and a longer form ('fullDate').

app/hero-birthday2.component.ts (class)
export class HeroBirthday2Component {
 birthday = new Date(1988, 3, 15); // April 15, 1988
 toggle = true; // start with true == shortDate

 get format() { return this.toggle ? 'shortDate' : 'fullDate'; }
 toggleFormat() { this.toggle = !this.toggle; }
}
As we click the button, the displayed date alternates between
"04/15/1988" and
"Friday, April 15, 1988".

[image: Date Format Toggle]Learn more about the DatePipes format options in the API Docs.

Chaining pipes

We can chain pipes together in potentially useful combinations.
In the following example, we chain the birthday to the DatePipe and on to the UpperCasePipe
so we can display the birthday in uppercase. The following birthday displays as
APR 15, 1988.

The chained hero's birthday is
{{ birthday | date | uppercase}}
This example — which displays FRIDAY, APRIL 15, 1988 —
chains the same pipes as above, but passes in a parameter to date as well.

The chained hero's birthday is
{{ birthday | date:'fullDate' | uppercase}}
Custom Pipes

We can write our own custom pipes.
Here's a custom pipe named ExponentialStrengthPipe that can boost a hero's powers:

app/exponential-strength.pipe.ts
import { Pipe, PipeTransform } from '@angular/core';
/*
 * Raise the value exponentially
 * Takes an exponent argument that defaults to 1.
 * Usage:
 * value | exponentialStrength:exponent
 * Example:
 * {{ 2 | exponentialStrength:10}}
 * formats to: 1024
*/
@Pipe({name: 'exponentialStrength'})
export class ExponentialStrengthPipe implements PipeTransform {
 transform(value: number, exponent: string): number {
 let exp = parseFloat(exponent);
 return Math.pow(value, isNaN(exp) ? 1 : exp);
 }
}
This pipe definition reveals several key points:

	A pipe is a class decorated with pipe metadata.

	The pipe class implements the PipeTransform interface's transform method that
accepts an input value followed by optional parameters and returns the transformed value.

	There will be one additional argument to the transform method for each parameter passed to the pipe.
Our pipe has one such parameter: the exponent.

	We tell Angular that this is a pipe by applying the
@Pipe decorator which we import from the core Angular library.

	The @Pipe decorator allows us to define the
 pipe name that we'll use within template expressions. It must be a valid JavaScript identifier.
 Our pipe's name is exponentialStrength.

The PipeTransform Interface

The transform method is essential to a pipe.
The PipeTransform interface defines that method and guides both tooling and the compiler.
It is technically optional; Angular looks for and executes the transform method regardless.

Now we need a component to demonstrate our pipe.

app/power-booster.component.ts
import { Component } from '@angular/core';

@Component({
 selector: 'power-booster',
 template: `
 <h2>Power Booster</h2>
 <p>Super power boost: {{2 | exponentialStrength: 10}}</p>
 `
})
export class PowerBoosterComponent { }
[image: Power Booster]Two things to note:

	We use our custom pipe the same way we use the built-in pipes.

	We must include our pipe in the declarations array of the AppModule.

Remember the declarations array!Angular reports an error if we neglect to list our custom pipe.
We didn't list the DatePipe in our previous example because all
Angular built-in pipes are pre-registered.
Custom pipes must be registered manually.

If we try the ,
we can probe its behavior by changing the value and the optional exponent in the template.

Power Boost Calculator (extra-credit)

It's not much fun updating the template to test our custom pipe.
We could upgrade the example to a "Power Boost Calculator" that combines
our pipe and two-way data binding with ngModel.

/app/power-boost-calculator.component.ts
import { Component } from '@angular/core';

@Component({
 selector: 'power-boost-calculator',
 template: `
 <h2>Power Boost Calculator</h2>
 <div>Normal power: <input [(ngModel)]="power"></div>
 <div>Boost factor: <input [(ngModel)]="factor"></div>
 <p>
 Super Hero Power: {{power | exponentialStrength: factor}}
 </p>
 `
})
export class PowerBoostCalculatorComponent {
 power = 5;
 factor = 1;
}
[image: Power Boost Calculator]Pipes and Change Detection

Angular looks for changes to data-bound values through a change detection process that runs after every JavaScript event:
every keystroke, mouse move, timer tick, and server response. This could be expensive.
Angular strives to lower the cost whenever possible and appropriate.

Angular picks a simpler, faster change detection algorithm when we use a pipe. Let's see how.

No pipe

The component in our next example uses the default, aggressive change detection strategy to monitor and update
its display of every hero in the heroes array. Here's the template:

app/flying-heroes.component.html (v1)
New hero:
 <input type="text" #box
 (keyup.enter)="addHero(box.value); box.value=''"
 placeholder="hero name">
 <button (click)="reset()">Reset</button>
 <div *ngFor="let hero of heroes">
 {{hero.name}}
 </div>
The companion component class provides heroes, adds new heroes into the array, and can reset the array.

app/flying-heroes.component.ts (v1)
export class FlyingHeroesComponent {
 heroes: any[] = [];
 canFly = true;
 constructor() { this.reset(); }

 addHero(name: string) {
 name = name.trim();
 if (!name) { return; }
 let hero = {name, canFly: this.canFly};
 this.heroes.push(hero);
 }

 reset() { this.heroes = HEROES.slice(); }
}
We can add a new hero and Angular updates the display when we do.
The reset button replaces heroes with a new array of the original heroes and Angular updates the display when we do.
If we added the ability to remove or change a hero, Angular would detect those changes too and update the display as well.

Flying Heroes pipe

Let's add a FlyingHeroesPipe to the *ngFor repeater that filters the list of heroes to just those heroes who can fly.

app/flying-heroes.component.html (flyers)
<div *ngFor="let hero of (heroes | flyingHeroes)">
 {{hero.name}}
</div>
Here's the FlyingHeroesPipe implementation which follows the pattern for custom pipes we saw earlier.

app/flying-heroes.pipe.ts
import { Pipe, PipeTransform } from '@angular/core';

import { Flyer } from './heroes';

@Pipe({ name: 'flyingHeroes' })
export class FlyingHeroesPipe implements PipeTransform {
 transform(allHeroes: Flyer[]) {
 return allHeroes.filter(hero => hero.canFly);
 }
}
When we run the sample now we see odd behavior (try it in the).
Every hero we add is a flying hero but none of them are displayed.

Although we're not getting the behavior we want, Angular isn't broken.
It's just using a different change detection algorithm — one that ignores changes to the list or any of its items.

Look at how we're adding a new hero:

this.heroes.push(hero);
We're adding the new hero into the heroes array. The reference to the array hasn't changed.
It's the same array. That's all Angular cares about. From its perspective, same array, no change, no display update.

We can fix that. Let's create a new array with the new hero appended and assign that to heroes.
This time Angular detects that the array reference has changed.
It executes the pipe and updates the display with the new array which includes the new flying hero.

If we mutate the array, no pipe is invoked and no display updated;
if we replace the array, then the pipe executes and the display is updated.
The Flying Heroes extends the
code with checkbox switches and additional displays to help us experience these effects.

[image: Flying Heroes]Replacing the array is an efficient way to signal to Angular that it should update the display.
When do we replace the array? When the data change.
That's an easy rule to follow in this toy example
where the only way to change the data is by adding a new hero.

More often we don't know when the data have changed,
especially in applications that mutate data in many ways,
perhaps in application locations far away.
A component in such an application usually can't know about those changes.
Moreover, it's unwise to distort our component design to accommodate a pipe.
We strive as much as possible to keep the component class independent of the HTML.
The component should be unaware of pipes.

Perhaps we should consider a different kind of pipe for filtering flying heroes, an impure pipe.

Pure and Impure Pipes

There are two categories of pipes: pure and impure.
Pipes are pure by default. Every pipe we've seen so far has been pure.
We make a pipe impure by setting its pure flag to false. We could make the FlyingHeroesPipe
impure like this:

@Pipe({
 name: 'flyingHeroesImpure',
 pure: false
})
Before we do that, let's understand the difference between pure and impure, starting with a pure pipe.

Pure pipes

Angular executes a pure pipe only when it detects a pure change to the input value.
A pure change is either a change to a primitive input value (String, Number, Boolean, Symbol)
or a changed object reference (Date, Array, Function, Object).

Angular ignores changes within (composite) objects.
It won't call a pure pipe if we change an input month, add to an input array, or update an input object property.

This may seem restrictive but is is also fast.
An object reference check is fast — much faster than a deep check for
differences — so Angular can quickly determine if it can skip both the
pipe execution and a view update.

For this reason, we prefer a pure pipe if we can live with the change detection strategy.
When we can't, we may turn to the impure pipe.

Or we might not use a pipe at all.
It may be better to pursue the pipe's purpose with a property of the component,
a point we take up later.

Impure pipes

Angular executes an impure pipe during every component change detection cycle.
An impure pipe will be called a lot, as often as every keystroke or mouse-move.

With that concern in mind, we must implement an impure pipe with great care.
An expensive, long-running pipe could destroy the user experience.

An impure FlyingHeroesPipe

A flip of the switch turns our FlyingHeroesPipe into a FlyingHeroesImpurePipe.
Here's the complete implementation:

@Pipe({
 name: 'flyingHeroesImpure',
 pure: false
})
export class FlyingHeroesImpurePipe extends FlyingHeroesPipe {}
import { Pipe, PipeTransform } from '@angular/core';

import { Flyer } from './heroes';

@Pipe({ name: 'flyingHeroes' })
export class FlyingHeroesPipe implements PipeTransform {
 transform(allHeroes: Flyer[]) {
 return allHeroes.filter(hero => hero.canFly);
 }
}
We inherit from FlyingHeroesPipe to prove the point that nothing changed internally.
The only difference is the pure flag in the pipe metadata.

This is a good candidate for an impure pipe because the transform function is trivial and fast.

return allHeroes.filter(hero => hero.canFly);
app/flying-heroes-impure.component.html (FlyingHeroesImpureComponent)
<div *ngFor="let hero of (heroes | flyingHeroesImpure)">
 {{hero.name}}
</div>
The only substantive change is the pipe in the template.
We can confirm in the that the flying heroes
display updates as we enter new heroes even when we mutate the heroes array.

The impure AsyncPipe
The Angular AsyncPipe is an interesting example of an impure pipe.
The AsyncPipe accepts a Promise or Observable as input
and subscribes to the input automatically, eventually returning the emitted value(s).

It is also stateful.
The pipe maintains a subscription to the input Observable and
keeps delivering values from that Observable as they arrive.

In this next example, we bind an Observable of message strings
(message$) to a view with the async pipe.

app/hero-async-message.component.ts
import { Component } from '@angular/core';
import { Observable } from 'rxjs/Rx';

@Component({
 selector: 'hero-message',
 template: `
 <h2>Async Hero Message and AsyncPipe</h2>
 <p>Message: {{ message$ | async }}</p>
 <button (click)="resend()">Resend</button>`,
})
export class HeroAsyncMessageComponent {
 message$: Observable<string>;

 private messages = [
 'You are my hero!',
 'You are the best hero!',
 'Will you be my hero?'
];

 constructor() { this.resend(); }

 resend() {
 this.message$ = Observable.interval(500)
 .map(i => this.messages[i])
 .take(this.messages.length);
 }
}
The Async pipe saves boilerplate in the component code.
The component doesn't have to subscribe to the async data source,
it doesn't extract the resolved values and expose them for binding,
and the component doesn't have to unsubscribe when it is destroyed
(a potent source of memory leaks).

An impure caching pipe

Let's write one more impure pipe, a pipe that makes an HTTP request to the server.
Normally, that's a horrible idea.
It's probably a horrible idea no matter what we do.
We're forging ahead anyway to make a point.
Remember that impure pipes are called every few microseconds.
If we're not careful, this pipe will punish the server with requests.

We are careful. Our pipe only makes a server call if the request URL has changed.
It caches the request URL and waits for a result which it also caches when it arrives.
The pipe returns the cached result (which is null while a request is in flight)
after every Angular call and only contacts the server as necessary.

Here's the code, which uses the Angular http facility
to retrieve a heroes.json file:

app/fetch-json.pipe.ts
import { Pipe, PipeTransform } from '@angular/core';
import { Http } from '@angular/http';

@Pipe({
 name: 'fetch',
 pure: false
})
export class FetchJsonPipe implements PipeTransform {
 private fetchedJson: any = null;
 private prevUrl = '';

 constructor(private _http: Http) { }

 transform(url: string): any {
 if (url !== this.prevUrl) {
 this.prevUrl = url;
 this.fetchedJson = null;
 this._http.get(url)
 .map(result => result.json())
 .subscribe(result => this.fetchedJson = result);
 }

 return this.fetchedJson;
 }
}
Then we demonstrate it in a harness component whose template defines two bindings to this pipe.

app/hero-list.component.ts (template)
template: `
 <h2>Heroes from JSON File</h2>

 <div *ngFor="let hero of ('heroes.json' | fetch) ">
 {{hero.name}}
 </div>

 <p>Heroes as JSON:
 {{'heroes.json' | fetch | json}}
 </p>
`
Despite the two bindings and what we know to be frequent pipe calls,
the nework tab in the browser developer tools confirms that there is only one request for the file.

The component renders like this:

[image: Hero List]JsonPipe

The second binding involving the FetchPipe uses more pipe chaining.
We take the same fetched results displayed in the first binding
and display them again, this time in JSON format by chaining through to the built-in JsonPipe.

Debugging with the json pipeThe JsonPipe
provides an easy way to diagnosis a mysteriously failing data binding or
inspect an object for future binding.

Here's the complete component implementation:

app/hero-list.component.ts
import { Component } from '@angular/core';

@Component({
 selector: 'hero-list',
 template: `
 <h2>Heroes from JSON File</h2>

 <div *ngFor="let hero of ('heroes.json' | fetch) ">
 {{hero.name}}
 </div>

 <p>Heroes as JSON:
 {{'heroes.json' | fetch | json}}
 </p>
 `
})
export class HeroListComponent { }
Pure pipes and pure functions

A pure pipe uses pure functions.
Pure functions process inputs and return values without detectable side-effects.
Given the same input they should always return the same output.

The pipes we saw earlier in this chapter were implemented with pure functions.
The built-in DatePipe is a pure pipe with a pure function implementation.
So is our ExponentialStrengthPipe.
So is our FlyingHeroesPipe.
A few steps back we reviewed the FlyingHeroesImpurePipe — an impure pipe with a pure function.

But a pure pipe must always be implemented with a pure function. Failure to heed this warning will bring about many a console errors regarding expressions that have changed after they were checked.

Next Steps

Pipes are a great way to encapsulate and share common display-value
transformations. We use them like styles, dropping them
into our templates expressions to enrich the appeal and usability
of our views.

Explore Angular's inventory of built-in pipes in the API Reference.
Try writing a custom pipe and perhaps contributing it to the community.

No FilterPipe or OrderByPipe

Angular does not ship with pipes for filtering or sorting lists.
Developers familiar with Angular 1 know these as filter and orderBy.
There are no equivalents in Angular 2.

This is not an oversight. Angular 2 is unlikely to offer such pipes because
(a) they perform poorly and (b) they prevent aggressive minification.
Both filter and orderBy require parameters that reference object properties.
We learned earlier that such pipes must be impure and that
Angular calls impure pipes in almost every change detection cycle.

Filtering and especially sorting are expensive operations.
The user experience can degrade severely for even moderate sized lists when Angular calls these pipe methods many times per second.
The filter and orderBy have often been abused in Angular 1 apps, leading to complaints that Angular itself is slow.
That charge is fair in the indirect sense that Angular 1 prepared this performance trap
by offering filter and orderBy in the first place.

The minification hazard is also compelling if less obvious. Imagine a sorting pipe applied to a list of heroes.
We might sort the list by hero name and planet of origin properties something like this:

<!-- NOT REAL CODE! -->
<div *ngFor="let hero of heroes | orderBy:'name,planet'"></div>We identify the sort fields by text strings, expecting the pipe to reference a property value by indexing
(e.g., hero['name']).
Unfortunately, aggressive minification munges the Hero property names so that Hero.name and Hero.planet
becomes something like Hero.a and Hero.b. Clearly hero['name'] is not going to work.

Some of us may not care to minify this aggressively. That's our choice.
But the Angular product should not prevent someone else from minifying aggressively.
Therefore, the Angular team decided that everything shipped in Angular will minify safely.

The Angular team and many experienced Angular developers strongly recommend that you move
filtering and sorting logic into the component itself.
The component can expose a filteredHeroes or sortedHeroes property and take control
over when and how often to execute the supporting logic.
Any capabilities that you would have put in a pipe and shared across the app can be
written in a filtering/sorting service and injected into the component.

If these performance and minification considerations do not apply to you, you can always create your own such pipes
(along the lines of the FlyingHeroesPipe) or find them in the community.

OEBPS/images/a19af445-37e1-47d4-9797-6ea870723604.gif
keyup loop-back component

OEBPS/images/885fd9fa-3b61-4490-95fe-5ebed2750c2b.gif
Give me some keys!

OEBPS/images/13432e4f-3ad3-456d-905c-c185569cc065.png
Tour of Heroes

My favorite hero is:
Windstorm

Heroes:

‘Windstorm
Bombasto
Magneta

« Tornado

OEBPS/images/6300ba44-9aab-47d7-bc79-b2756eaa4979.png
Hero Form

Name

Name is required
Alter Ego
Chuck Overstreet

Hero Power

I Really Smart

Submit

OEBPS/images/972a8bce-5608-4550-b7bf-776d4bdfde7e.png
Hero Form

Name

I oriQ

Alter Ego

Chuck Overstreet

Hero Power

I Really Smart

Submit

OEBPS/images/8cc04628-6c28-40f7-8a7e-4a0f16ef10cd.gif
Little Tour of Heroes %

Add

« Windstorm
« Bombasto
« Magneta
« Torado

OEBPS/images/49b39930-c2f4-4302-8935-a92c71132235.gif
Type away! Press [enter] when done

OEBPS/images/df90148e-c5ad-42df-bb51-e63798f737e7.png
Hero Form

{"id":18,"name":"Dr 1Q 3000","power":"Super
Flexible","alterEgo":"Chuck OverUnderStreet"}
Name

Dr 1Q 3000

Alter Ego

Chuck OverUnderStreet

Hero Power

Super Flexible

OEBPS/images/cba8be2c-1003-4339-aa14-2c7423af2379.png
Dr 1Q 3000

TODO: remove this: Dr I1Q 3000

OEBPS/images/dd656315-82f2-4d24-b982-7614e45f4c28.png
Hero Form

Name
Alter Ego

Hero Power

Really Smart

OEBPS/images/8bcf37d9-1c35-4aee-92f8-22c2dcd12742.png
Name is required

OEBPS/images/3cc91b37-539d-4405-a31d-3cb88a4f2f0c.png
l DriQ Valid + Required
Chuck Overstreet Valid + Optional

I Invalid

OEBPS/images/891a5e98-97fa-423a-a070-791ad12ea523.png
oriq

TODO: remove this: form-control

oriQ

Ing-untouched ng-pristine ng-valid

TODO: remove this: form-controf

ng-pristine ng-valid ng-touched

Dr e/

TODO: remove this: form-control

ng-touched ng-dirty

TODO: remove this: form-control|

Ing-touched ng-dirty ng-invalid

Untouched

Touched

Changed

Invalid

OEBPS/images/bda33f19-1827-4fec-a4c9-4fa429c93b36.gif
pria
TODO: remove this: form-control ng-untouched ng-pristine ng-valid

OEBPS/images/333be841-7c91-457a-859c-2024a14f4067.gif
NgSwitch Binding

Eenie © Meanie © Miney © Moe © 222

] Pick a toe

OEBPS/images/7b2fdc5e-0598-434d-8409-08fbd625896e.gif
NgForTrackBy

Refresh heroes |

First hero: Hercules|

without trackBy

(1) Hereules Son of Zeus
(2) eenie toe

(3) Meanie Toe

(4) Miny Toe

(5) Moe Toe

with trackBy and semi-colon separator

(1) Hereules Son of Zeus
(2) eenie toe

(3) Meanie Toe

(4) Miny Toe

(5) Moe Toe

OEBPS/images/34bee248-83a8-45bc-b7fd-d65a5da20b5b.png
o x

Launch the preview in a separate

OEBPS/images/99fddc82-033c-4dbb-b451-1087903aaec6.gif
NgModel Binding

Result: Hercules

Hercules I;\nhom NgModel

Hercules (ngModel)]

Hercules bindon-ngModel

Hercules (ngModelChange) = ".. firstName=Sevent"

Hercules (ngModelChange) = “setUpperCaseFirstName(Sevent)"

OEBPS/images/fbe5a810-b64a-45d0-84ca-d66c33d8abd6.gif
Cc f localhost:3002

Setting The Document Title
Using The Title Service

Select a title to set on the current HTML document

«+ Good morni|
« Good afternobn
 Good evening.

OEBPS/images/a9c5f855-5de8-46ca-8858-6cdf9d27a35b.png
" lemplate <script>alert("evil never sleeps”)</script>3Syntax” Is the /nterpolatead evil title.

"Template Syntax" is the property bound evil title.

OEBPS/images/6408ec17-8251-4307-84c3-6d1d20bd7980.gif
Windstorm

OEBPS/images/0c1f2c1b-26f2-4490-bc21-a857ca5f6bb9.png
V4 fnpuc /Dubput

<hero-detail [hero]="currentHero" (deleteRequest)="deleteHero($event)

OEBPS/images/8ef4e48c-b2bf-4f8d-8b33-1ea20997eb9d.png
inactive => active

inactive active

active => inactive

OEBPS/images/51e7ac19-0c35-41b5-951a-debee3aee215.png
Tour of Heroes

Heroes

My Dashboard

“

OEBPS/images/f7191a5d-a0fd-4fb7-8f47-214f01615a66.png
<p _ngcontent-tnn-1>
condition is true and ngIf is true.

<sp>

<seripts</scripts

OEBPS/images/6bf52fc4-a857-46b6-8eec-36aa70e69887.png
Bypass Security Component

A dangerous URL:

Click me.

Resource URI An embadded page says:
Hithere

Showing

Prevent this page from creating additional dialogs.

OEBPS/images/0ad10f9a-2ba0-4842-a8bb-68e28b21e88b.png
Binding innerHTML

Bound value:

Template <script>alert("Owned")</script> Syntax
Result of binding to innerHTML:

Template alert("Owned") Syntax

OEBPS/images/65b1a831-bf38-448f-b246-02caeb288e38.png
o x

Launch the preview in a separate

OEBPS/images/dd8c1a58-3204-40aa-975a-aebe8e618e85.png

| Component |

{}

OEBPS/images/a6c236dd-a548-48d3-9397-33bbcd958ef1.png
I Module I Module |
@Dmpuwew‘q: Senvice 1
' i '

o Tewplate

T Module | Module ! Directive
R o < I S _
X EECTN T S {}
Property Event
| V\(j ector Binding Binding

Service

Fo}
[F)[F)

OEBPS/images/e3a3d184-e129-4563-9041-ff3d5503103d.png

OEBPS/images/5a91614f-f457-4dcb-9221-2da5c798953b.png
Hero Search

Magneta

RubberMan

Dynama
Magma

OEBPS/images/8805d07e-3c83-49e2-afc2-1c1c625eb2d2.gif
show | hide | heavy loader #1 on duty! %
if | i heavy loader #2 on duty!

heavy-loader log:

heavy-loader 1 initialized, loading 10,000 rows of data from the server
heavy-loader 2 initialized, loading 10,000 rows of data from the server

OEBPS/images/4e41171b-8a27-4969-8520-f52720387651.png

OEBPS/images/7816513a-8a4a-462b-b79e-c1368d3876cb.png
Template

< > —

OEBPS/images/81789596-218c-403e-891e-40a1f916c62d.png
Hero
Component

(y ™

OEBPS/images/322601ad-4efc-4ec7-8ea6-4eee5baf76c4.png

| {} :.31415:' }\:

OEBPS/images/188e624b-5f4c-4c63-bb6f-b5428a9b3302.png
Metadata

OEBPS/images/b38301a9-4bb9-47ec-a165-190a1066dfc9.png
{{vatue}}
3 [iwopevtg] = *value*

(event) = 'havwﬂcr)'

AINANOAWOO

L(ng-model)] = “property’
—_

OEBPS/images/e0e511c3-872a-4115-83c4-36c822205094.png
Tewmplate
< >

Metndata

@

OEBPS/images/79878554-a84b-4c45-966c-c61a34579d72.png
l {)

OEBPS/images/9e2f1ac7-8790-4e8b-8600-64af1ad7df6b.png
Dlrective
{}

OEBPS/images/15814a18-0e7f-48c7-bab2-c20c03af8cc7.png
Parent
Co
mponent T?ma/(pe [L/b ¢
ate

wcvt

§ ml

OEBPS/images/7d29a4d3-0d36-4070-9948-37e61c252240.png
Template
< >
Bvent

Property vent
gwimg Metadats Binding

Component

OEBPS/images/a0a5dfad-68f5-4134-9ec0-d74ff7a7dd7d.png
Tour of Heroes

My favorite hero is: Windstorm

OEBPS/images/d47afa2f-5faf-48fb-96fd-e34b246811f3.png
Tour of Heroes

My favorite hero is: Windstorm

Heroes

+ Windstorm
+ Bombasto
+ Magneta
+ Tomado

There are many heroes!

OEBPS/images/9a8901ae-0a60-4078-95d9-638c09a5a1be.png
Injector
s

OEBPS/images/4ce330eb-0e80-4e54-976d-5d5452856baf.png
e
N
Component =
{Constructor (service)}

OEBPS/images/4e81db60-3ee1-47a3-a2f1-41b39ac6bcc0.png
Power Booster

Super power boost: 1024

OEBPS/images/8cc169e8-7cd6-44d7-b8e5-c60618fb8586.png
@®Jasmine .41

OEBPS/images/0d2d3fba-5062-4351-b7a9-949072ff7dde.gif
The hero's birthday is 4/15/1988

Toggle Format

OEBPS/images/ff6420a8-0011-498b-aea6-9a80f3e48f1e.png
@Jasmine
X

5 specs, 2 fail

Spec List

OEBPS/images/5f580bae-c73f-4d81-80d8-4c6591e279d2.png
projected content begins --

projected content ends —

OEBPS/images/54a9df38-1b15-4d46-a0f1-216e88641176.png
Hero
has nane
has 1d

MyUppercaseipe
transforns "
transforns
Teaves "ABC DEF" unchanged

OEBPS/images/b8a6da54-5a30-46fb-b379-9dd2dddbb15c.gif
AfterView

~- child view begins ~
Magneta

— child view ends —
— AfterView Logs —

Reset
AfterView constructor: no child view
AfterViewlnit: Magneta child view

AfterViewChecked: Magneta child view

back to top

OEBPS/images/4de15333-d143-4f59-af5a-0c49acf014b4.png
A1 $injector A2 Root Injector

Upgrade

A2 Child Injector A2 Child Injector

OEBPS/images/f7cc963d-1d96-461b-bdb4-f46b2c5f25f5.png
Heroes from JSON File

Windstorm
Bombasto
Magneto
Tornado

Heroes as JSON: [{ "name": "Windstorm" }. {
“name": "Bombasto” }, { "name": "Magneto” }, {
: "Tornado" }]

OEBPS/images/5eebda26-6d9e-4765-acee-9ed533e5da05.gif
Flying Heroes

New fiying hero:

@ Mutate array

lhero name

Reset

Heroes who fly (piped)

Windstorm
Tornado

Al Heroes (no pipe)

Windstorm
Bombasto
Magneto
Tornado

@ canfly

OEBPS/images/22260acd-8c3a-435b-b4fd-d844ffe6215c.gif
Power Boost Calculator

Normal power: 5
Boost factor: 1

Super Hero Power: 5

OEBPS/images/41bafcd1-ac99-4201-9fb6-41713d6067a5.png
A1

OEBPS/images/00e28eeb-5d35-47d4-b37f-3a5335cdaa5f.png
A2

OEBPS/images/6b42bb1c-c610-4e0f-aefc-ff363325c10f.png
Crisis Center ~ Heroes

CRISIS CENTER

. Dragon Buming Cities

. Sky Rains Great White Sharks

Giant Asteroid Heading For Earth

Procrastinators Mesting Delayed Again

OEBPS/images/b92ddd68-ff40-4e46-aa54-fa58d87ae620.png

OEBPS/images/cbd0545d-761e-4d5a-9ca2-1bceed53fb02.png
Crisis Center

HEROES

"Magneta”

1d: 15
Name: Magneta

Back

Heroes

OEBPS/images/84e30903-e349-477a-8785-422f1f2f0dd1.png
click render

Application code A2 change detection A1 $rootScope.$apply()

OEBPS/images/61005602-532e-4db1-bbe4-cd5bcc197639.png
Crisis Center Heroes

HEROES

OEBPS/images/2d97a6f8-6cb1-442b-b0f9-89433128c5eb.png

OEBPS/images/afd4a64a-7a4b-4ce1-befe-729987a44651.png
o x

Launch the preview in a separate

OEBPS/images/00a071c8-fcee-4bb0-a476-6f4cf23b7c0e.png

OEBPS/images/e166248f-5fe0-4ffa-b77b-346c46ad6b73.png
MR. NICE is my hero

‘\’vow I)ctmh‘

OEBPS/images/d7832918-fb1e-434f-bc5c-b1143c3352ce.png
Crisis Conter Horoes ——————————F> Crisis Center _Heroes

CRISIS CENTER

[[

=

Giant Asteroid Heading For Earth

astinators Meeting Delayed Again

Crisis Center Heroes

CRISIS CENTER

“Giant Asteroid Heading For Earth”

&3
Name: Gant Assrod Heading For Eatn

L sme cance

HEROES
[
=

-]
-
a
a

RubberMan

Crisis Center Heroes

HEROES

“Magneta®

115
Nome: ognets

Back

OEBPS/images/2852a05c-6b67-49bb-bd4f-8aa7b88dd3d6.png
o x

Launch the preview in a separate

OEBPS/images/ce9dfa54-a42f-4c88-9e06-8bc28f6f57c4.gif
Component Router

Crisis Center ~ Heroes

OEBPS/images/877eb5c6-90f8-46a6-ba1e-584c58601828.png
Outside of Angular Inside of Angular

- P <p _ngcontent-qpf-2>
Hip! /o Hip!

¥ template </p>
]
Hooray! [ocunent - Fragnent <scripts></script>
? Hip! <p _ngcontent-qpf-2>
/p Hooray!
/template: </p>
o

Hooray!
/D

OEBPS/images/2e61087c-6950-4b69-bd85-664a1c88b194.png
The page at 127.0.0.1:8080 says:

Discard changes?

oKk Cancel

OEBPS/images/7dd752de-9aef-4f91-97d6-2fabb0ac0f00.png
<scripty</scripts
<p _ngcontent-tan-1>

condition is true and myUnless is false.
<Jp>

OEBPS/images/616c0efd-b296-4182-8bb0-db6a6a1ea131.png
Crisis Center ~ Heroes

CRISIS CENTER

"Giant Asteroid Heading For Earth"

Id: 3
Name: Giant Asteroid Heading For Earth

Save Cancel

OEBPS/images/c89c2ab4-1316-4b58-8d1e-f4b42243c384.png
@Jasmine 2.3.4 options

1 spec, 0 failures finished in 0.001s

true is true

OEBPS/images/c44cb97f-81d1-48dc-9ebf-cce40b84caa9.png

OEBPS/images/5979de07-cc60-4410-baa8-4357b3db637b.gif
Tour of Heroes

Dashboard Heroes

Top Heroes

— “ “

OEBPS/images/0c626e06-3a68-4528-999e-242a68597671.png
Tour of Heroes ‘Tour of Heroes.

Dastboard Horoes 4—————————————» Dashboard_ Horoes
Top Heroes My Heroes

‘BEE®

[- OB

[-

Tour of Heroes “ S

{—— Dashboard

n ey

Magneta details! o
D

id: 15 .

name: Magneta [- R

MAGNETA is my hero

e View Dot

Back

OEBPS/images/00458c4d-c233-4273-b81d-6abf03fcb8b2.png
Component Router

Crisis Center Herces | Nav Bar

CRISIS CENTER

Router Outlet

Get your crisis here

OEBPS/images/69c2d42b-96d8-408f-b6cc-4e9ce57ed505.png
Tour of Heroes

My Heroes

Mr. Nice
O

Bombasto

Celeritas

RubberMan

Dynama

DriQ

Tomado

OEBPS/images/27c8212c-22cd-4a99-b011-d1b383879309.gif
Component Router

Crisis Center ~ Heroes

OEBPS/images/28eb7c48-a7d0-4a97-a19b-0ee319662aa6.png
Tour of Heroes

Dashboard Heroes

Magneta details!

id: 15

name: Magneta

Back

OEBPS/images/a4c3b3b0-4d80-471d-8c0b-79633270a774.gif
Component Router

Crisis Center , Heroes

N

OEBPS/images/c6f03dd1-c3ec-41fc-b8fb-ee4fdbe9a1ab.png
Elements Network | Sources | Timeline Profiles Reso

1st-specits x

describe('1st tests', () => {

1
2
3 it('true is true', () => expect(true).toEqual(true));
4
5

it('null is not the same thing as undefined',
| 6] () => expect(null).toEqual(undefined));
7
8 1)
9

{} Lines6, Column 11

N ¥t '/) @ O Async
> Call Stack
v Breakpoints

[¥) 1st-spec.ts:6
() => expect(null).toEqual(undefined));

Console | Search Emulation Rendering
© W <topframe> ¥ [Preserve log

> null === undefined

false

OEBPS/images/17b31ec3-5513-4e07-a0bf-2f522e8857e5.png
Tour of Heroes

Heroes

Top Heroes

“M

OEBPS/images/53d5672c-eecb-47d5-bf10-b16277d1d8b5.png
Jasmine

OEBPS/images/12f66de7-10fb-4aea-b3c3-ab2d32d6bdeb.png
Tour of Heroes ‘Tour of Heroes.

Dastboard Horoes 4—————————————» Dashboard_ Horoes
Top Heroes My Heroes

‘BEE®

[- OB

[-

Tour of Heroes “ S

{—— Dashboard

n ey

Magneta details! o
D

id: 15 .

name: Magneta [- R

MAGNETA is my hero

e View Dot

Back

OEBPS/images/1b1f1ced-d7ea-406e-85c1-0ed2205775dd.png
@ Jasmine options

2 specs, 0 failures Finished in 0.00:

Hero
has name given in the constructor
has id given in the constructor

OEBPS/images/ff75af70-6300-4043-b280-e7ca01871370.png
Tour of Heroes

Dashboard Heroes

My Heroes

n Mr. Nice

Narco

Bombasto
Celeritas
Magneta

RubberMan

DriQ

Magma

Tornado

OEBPS/images/36642a99-006a-426b-a4fa-64b300bc7837.png

OEBPS/images/66fd7a0d-e71d-456f-8161-476be8315614.png
1 spec, 0 failures finished in 0.001s

1lst tests:
true is true

OEBPS/images/10d2ec4b-23b0-4245-9511-848908bbd73d.png
o x

Launch the preview in a separate

OEBPS/images/dbb5b44e-26c8-4b69-9e9c-e3b9722c1a14.png
2 specs, 0 failures finished in 0.002s

1st tests:
true is true
null is not the same thing as undefined

OEBPS/images/4e9c6b32-5c74-4752-a61c-17c60fbe559c.png

OEBPS/images/72476988-0753-40ad-8f3d-c01ed25e7081.png
Spec List

Expected null to equal undefined.

Error: Expected null to equal undefined.
at stack (file:///c:/github/lst-tests/node_modules/ja

OEBPS/images/a669b24b-dfaf-47b3-8a1a-9f426b0ad2e2.png
App Root
Component

[—
Feature & Feature ‘B’ Feature 'C’
Component Component Component
AL Component | | B1 Component
A2 Component | | B2 Component || D1 Component || E1Component
T T T
A3 Component D2 Component || E2 Component

OEBPS/images/83681dce-12d9-4de8-a734-422614398c9e.png
2 specs, 1 failure finished in 0.003s

Spec List | Failures

1st tests:
true is true
null is not the same thing as undefined

OEBPS/images/c824b40c-45ad-48eb-9edf-8d568daba58a.gif

OEBPS/images/c4fecb00-dc9e-4f9a-a7d8-321ecb72103c.png
Hero Bios and Contacts

RubberMan

Phone #: 123-456-7899
Hero of many talents

OEBPS/images/8b388fc6-a9b7-4a7c-8f9c-00c68fc6d974.gif

OEBPS/images/9fbd7d5a-bc4c-4387-ab3b-e6f205cad50a.png
Hero of the Month

Winner: Magma
Reason for award: Had a great month!
Runners-up: RubberMan, Mr. Nice

Logs:

INFO: starting up at Fri Apr 012016
23:31:10 GMT-0700 (Pacific Daylight Time)

OEBPS/images/fd92fb16-0fdd-443a-ba06-8a862113e15b.png
void

void => 1in
void => *

OEBPS/images/04642899-963d-4478-b45d-bcd827894984.png
this.logs = logger.logs;
logger. logInfo('sta © logInfo (method) MinimslLogger. loginfo(mse: string): void
@ logs

OEBPS/images/988da935-e88a-4820-809a-724f0939d7b0.png
inactive => active

inactive => *

* => active

* = *
inactive active

active => inactive
active => *

* => inactive
* - *

OEBPS/images/a09647fe-4609-4f97-82fd-494016596525.png
INFO: starting up at Fri Apr 01 2016
23:31:10 GMT-0700 (Pacific Daylight Time)

OEBPS/images/afec78b6-1af6-4fe4-9ddc-4c32e43580e9.gif

OEBPS/images/e74c4554-d287-4b8c-943b-dcbb966dea43.gif

OEBPS/images/069de10c-a8a8-4835-bd8f-b8a8f7300128.gif

OEBPS/images/7d64e7a4-67a5-4923-88a8-ac86a8ec8d84.png
Hero Bios and Contacts

RubberMan
Phone #: 123-456-7899
Hero of many talents
Magma

Phone #: 555-555-5555
Hero of allrades

Mr. Nice

Phone #: 111-222-3333
‘The name says it all

OEBPS/images/3b17ddcd-1fa9-489e-bcea-c913b9fc2ca3.png
inactive active

OEBPS/images/de8dbb28-4ae7-48f4-9e36-dfe7e0c9f3e9.png
RubberMan

Phone #: 123-456-7899)
Hero of many talents

OEBPS/images/89ecc128-87be-40ae-9f03-4b9697ccdf99.gif

OEBPS/images/a20b8867-ef04-4263-9899-3693026efd96.gif
Highlight me!

OEBPS/images/f3be17ae-0af7-4f77-803b-92e9c747c744.png
Sorted Heroes

Magma
Mr. Nice
RubberMan

OEBPS/images/5b8024fa-288e-4e66-a64b-bdccf7c48129.png
My First Angular 2 App
Highlight me!

OEBPS/images/8baa6664-0e0f-4a06-94b2-6da608963fcb.png
Alex

Cathy

ound Alex via the component cla

Craig

Did not find Alex

Carol

My parent is Alex

OEBPS/images/9a262f5d-4e75-4048-b891-c152377aa895.png
Alice

parent

s Bob

SRy Carol Chris
My parent || My paren
is Barry s Barry

St Carol Chris
My parent || My paren!

s Beth

Ech Carol Chris

parent

Carol

My parent is Al

OEBPS/images/5c6da86b-62a5-410c-8b5c-af2438f15273.png
Job Application for Heroes

First name

OEBPS/images/dfe2da5f-5b74-43eb-8c54-096eabefa6ac.png
Injector.resolveAndCreate ([Car, Engine, Tires])

Injector.resolveAndCreateChild ([Car, Enginel])

Injector.resolveAndCreateChild ([Car])

OEBPS/images/e48fbd34-3c27-4eb0-91f8-8044a2fdecf5.png
Master controls 3 heroes
Mr. IQ says:

1. Mr. Q. am at your service, Master.
Magneta says:

1. Magneta. am at your service, Master.
Bombasto says:

1. Bombasto. am at your service, Master.

OEBPS/cover.jpeg

OEBPS/images/ebd68abe-6802-4e05-ad04-fe1457bde62b.png
HeroesApp

HeroesListComponent

HeroesCardComponent

HeroesCardComponent

HeroesCardComponent

OEBPS/images/5a5cf33b-b961-4d9d-8b50-c419afb5ab89.png
Master controls 3 names

"Mr. 1Q"

""<no name set>"

"Bombasto"

OEBPS/images/a702d772-8bc1-4933-9ba8-32bc15e3deb3.gif
My First Attribute Directive

Pick a highlight color

Green © Yellow © Cyan

Highlight me! NO default-color binding

Highlight me too! with[vjolet' default-color binding

OEBPS/images/645ed2dc-d616-4a6c-a815-68c0da93940d.gif
Source code version

New minor version || New major version
Version 1.23
Change log:

« major changed from {} to 1. minor changed from {} to 23

OEBPS/images/49694927-7cda-4eb7-850f-0d2b668518ca.gif
My First Attribute Directive
Pick a highlight color

Green O Yellow © Cyan

Highlight me!

OEBPS/images/644bed72-16a9-4468-bf33-01e959c972fc.gif
Should mankind colonize the Universe?
Agree: 0, Disagree: 0

Mr.1Q

[Agree || Disagree

Ms. Universe

[Agree || Disagree

Bombasto

Agree | Disagree

OEBPS/images/3d9d0308-6470-43f5-995f-175d87d88346.png
Peek-A-Boo

Create PeckABooComponent

~ Lifecycle Hook Log ~

#1 name iis not known at construction
#2 OnChanges: name initialized to "Windstorm
#3 Onlnit

#4 DoCheck

#5 AfterContentlnit

#6 AfterContentChecked

#7 AfterViewlnit

#8 AfterViewChecked

#9 DoCheck

#10 AfterContentChecked

#11 AfterViewChecked

#12 DoCheck

#13 AfterContentChecked

#14 AfterViewChecked

#15 OnDestroy

OEBPS/images/20e9202c-d134-40c7-a892-e9580c8b1df2.gif
Wikipedia Form

Fetches when typing stops

OEBPS/images/d39d5b63-cc80-4095-9a98-ca2027929cde.gif
Wikipedia Demo

Fetches after each keystroke

OEBPS/images/fb751462-c4f8-4931-8c57-623239f43070.gif
Tour of Heroes

Heroes:

New Hero: Add Hero |

OEBPS/images/9e1cb8ce-4f69-448b-8ac8-691661172e86.png

OEBPS/images/be3bf67e-c7c4-491c-a38d-1124f3821f91.png
RubberMan

Phone #: 123-456-7899
Hero of many talents

OEBPS/images/c1c4596a-339f-4595-bf42-88be2338b5b6.gif
DoCheck

Power: sing
Hero.name: Windstorm

ResetLog

- Change Log ~

OnChanges: hero: currentValue = {"name":"Windstorm"}, previousValue = {}
OnChanges: power: currentValue = "sing", previousValue = {}

DoCheck: Hero name changed to "Windstorm" from ™

DoCheck: Power changed to "sing" from ™

DoCheck called 26x when no change to hero or power

OEBPS/images/7781671a-f866-4305-9c52-e945c2adfb23.gif
Countdown to Liftoff

OEBPS/images/668e2899-57ff-4bc5-a766-15edf07e1902.gif
OnChanges

Power: sing]
Hero.name: Windsiorm

Reset Log

- Change Log ~

hero: currentValue = {"nam
power: currentValue

‘Windstorm"}, previousValue = {}
'sing”, previousValue = {}

back to top

OEBPS/images/418da481-6c28-4326-9b98-d6cf116fc416.gif
Mission Control

Announce mi
Lovell: <no mission announced> | Coniim
Swigert: <no mission announced> | Confim

Haise: <no mission announced> | Confim

History

OEBPS/images/59dc299b-692d-4edc-bc41-9d54ec0b026b.gif
Spy Directive

Herbie Add Hero || Reset Heroes
Windstorm [N
Magneta

— Spy Lifecycle Hook Log —

Spy #1 onlnit
Spy #2 onlnit

OEBPS/images/065a1881-79f0-4993-85aa-71a6f1c8c3b0.png
Logged in user

Name: Bombasto
Role: Admin

OEBPS/images/7b5dc3ef-1edd